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Abstract

In this report, we provide a definitive description of the standard input format.

It is intended to be used primarily as a reference document.
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1 Introduction

The mathematical modelling of many real-world applications involves the minimiza-
tion or maximization of a function of unknown parameters or variables. Frequently
these parameters have known bounds; sometimes there are more general relationships
between the parameters. When the number of variables is modest, say up to ten, the
input of such a problem to an optimization procedure is usually fairly straightforward.
Unfortunately many application areas now require the solution of optimization prob-
lems with thousands of variables; in this case merely the input of the problem data
is extremely time-consuming and prone to error. Moreover, the mathematical pro-
gramming community is only now designing algorithms for solving problems of this
scale.

The format described in this report was motivated directly by the difficulties the au-
thors were experiencing entering test examples to the LANCELOT large-scale nonlinear
optimization package. It soon became apparent that if others were to be encouraged to
carry out similar tests and even enticed to use our software, the process of specifying
problems had to be considerably simplified. Thus we were inevitably drawn to provide
a preliminary version of what is described here: a standard input format (SIF) for non-
linear programming problems, together with an appropriate translator from the input
file to the form required by the authors’ minimization software. While understandably
reflecting our views and experience, the present proposal is intended to be broadly
applicable.

During the subsequent (and successive) stages of development of these preliminary
ideas, various important considerations were discussed. These strongly influenced the
present proposal.

• There are many reasons for proposing a standard input format. The most obvious
one is the increased consistency in coding nonlinear programming problems, and
the resulting improvement in code reliability. As every problem is treated in
a similar and standardized way, it is more difficult to overlook certain aspects
of the problem definition. The provision of a SIF file for a given problem also
allows some elementary (and very often helpful) automatic error and consistency
checking.

• A further advantage of having a standard input format is the long awaited pos-
sibility of having a portable testbed of meaningful problems. Moreover, such a
testbed that can be expected to grow. The authors soon experienced the daunt-
ing difficulties associated with specifying large scale problems — not only the
difficulty of writing down the specification correctly but also the actual coding
(and frequent re-coding) of a particular problem which often results in non-trivial
differences between the initial and final data. These differences could be a major
obstacle to valid comparisons between competing optimization codes. By con-
trast, having a SIF file allows simple and unambiguous data transfer via diskette,
tape or electronic mail. The success of the NETLIB and Harwell/Boeing prob-
lem collections for linear programming and sparse linear algebra [9, 6] is a good
recommendation for such flexibility. The formality required by the SIF approach
may admittedly appear formidable for very simple problems, but is soon repaid
when dealing with more complex ones.

• Of course, the SIF format should cover a large part of the practical optimization
problems that users may want to specify. Explicit provision should be made not
only for unconstrained problems, but also for constraints of different types and
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complexity: simple bounds on the variables, linear and/or nonlinear equations
and inequalities should be handled without trouble. Special structure of the prob-
lem at hand is also a mandatory part of an SIF file. For example, the structure
of least-squares problems must be described in an exploitable form. Sparsity of
relevant matrices and partial separability of involved nonlinear functions must be
included in the standard problem description when they are known. Finally, the
special case of systems of nonlinear equations should also be covered.

• The existence and worldwide success of the MPS standard input format for linear
programming must be considered as a de facto basis for any attempt to define
an SIF for nonlinear problems. The number of problems already available in this
format is large, and many nonlinear problems arise as a refinement of existing
linear ones whose linear part and sparsity structure are expected to be described
in the MPS format. It therefore seems reasonable to require that an SIF for non-
linear programming problems should conform to the MPS format. We were thus
led to choose a standard that corresponds to MPS, augmented with additional
constructs and structures, thus allowing nonlinearity, and the general features
that we wished, to be described properly.

• The requirement of compatibility with the MPS format has a number of conse-
quences, not all of which are pleasant. The first one is that the new SIF must be
based on fixed format for the SIF file. Indeed, blanks are significant characters
in MPS, when they appear in the right data fields, and cannot be used as general
separators for free format input in any compatible system. The second one is
the a priori existence of a “style” for keywords and overall layout of the problem
description, a format which is not always ideally suited to nonlinear problems.
Our present proposal accepts these limitations.

• The SIF should not be dependent on a specific operating system and/or man-
ufacturer. In this respect, it must avoid relying on tools that may be excellent
but are too specific (yacc and lex, for example). This of course does not prevent
any implementation of an SIF interpreter using whatever facilities are locally
available.

• In principle, the SIF should not be dependent on a particular high level pro-
gramming language. However, as the intention is that SIF files may be converted
into executable programs, restrictions on the symbolic names allowed by different
programming languages may influence the choice of names within the problem
description itself. For instance, in Fortran, symbolic variables may only contain
up to six characters from a restricted set. We have chosen to base the present
proposal, where necessary, on Fortran as this appears to be the most restrictive
of the more popular high level languages. This dependence has been isolated as
much as possible.

The authors are very well aware of the shortcomings of the SIF approach when
compared to more elaborate modelling languages (see, for example, GAMS [1], AMPL
[7], and OMP [4]. These probably remain the best way to allow easy and error free
input of large problems. However, we contend that there is at present no language in
the public domain which satisfactorily handles the nonlinear aspects of mathematical
programming problems. While the advent of a tool of this nature is very much hoped
for, it nevertheless seems necessary to provide something like the SIF now. This (we
hope, intermediate) step is indeed crucial for the development and comparison of algo-
rithms for solving large scale nonlinear problems, without which a more elaborate tool
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would be meaningless anyway. The SIF for nonlinear problems may also be considered
as a first attempt to specify the minimal structures that should be present in a true
modelling language for such problems. It is also of interest to develop a relatively
simple input format, given that researchers developing new optimization methods may
have to implement their own code for translating the SIF file into a form suitable for
their algorithms. At this level, some compromise between completeness and simplic-
ity seems necessary. Finally, the existence and availability of modelling languages for
linear programming for a number of years has not yet made the MPS format irrelevant.

Hence, the reader should be aware that what sometimes appear as unnecessarily
restrictive “features” of the proposed standard are often direct consequences of the
considerations outlined above.

In the next section, we explain how we propose to exploit the structure in problems
of the form (2.1)–(2.4) . We do this both in general and for a number of examples.
Details of the way such structure may be expressed in a standard data input for-
mat follow in Section 3. The input of nonlinear information for element and group
functions is covered in Section 4 and Section 5 respectively. The formats proposed in
Sections 3–5 are quite rigid. A more flexible, free-form, input is considered in Section 6.
The relationship to existing work is presented in Section 7 and conclusions drawn in
Section 7.

2 An introduction to nonlinear optimization

problem structure

As we have already mentioned, structure is an integral and significant aspect of large-
scale problems. Structure is often equated with sparsity; indeed the two are closely
linked when the problem is linear. However, sparsity is not the most important phe-
nomenon associated with a nonlinear function; that role is played by invariant sub-
spaces. The invariant subspace of a function f(x) is the set of all vectors w for which
f(x + w) = f(x) for all possible vectors x. This phenomenon encompasses function
sparsity. For instance, the function

f(x1, x2, · · · , x1000) = x2
500

has a gradient and Hessian matrix each with a single nonzero, has an invariant subspace
of dimension 999, and is, by almost any criterion, sparse. However the function

f(x1, x2, · · · , x1000) = (x1 + · · ·+ x1000)
2

has a completely dense Hessian matrix but still has an invariant subspace of dimension
999, the set of all vectors orthogonal to a vector of ones. The importance of invariant
subspaces is that nonlinear information is not required for a function in this subspace.
We are particularly interested in functions which have large (as a percentage of the
overall number of variables) invariant subspaces. This allows for efficient storage and
calculation of derivative information. The penalty is, of course, the need to provide
information about the subspace to an optimization procedure.

A particular objective function F (x) is unlikely to have a large invariant subspace
itself. However, many reasonably behaved functions may be expressed as a sum of
element functions, each of which does have a large invariant subspace. This is certainly
true if the function is sufficiently differentiable and has a sparse Hessian matrix [11].
Thus, rather than storing a function as itself, it pays to store it as the sum of its
elements. The elemental representation of a particular function is by no means unique
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and there may be specific reasons for selecting a particular representation. Specifying
Hessian sparsity is also supported in the present proposal, but we believe that it is
more efficient and also much easier to specify the invariant subspaces directly.

LANCELOT considers the problem of minimizing or maximizing an objective func-
tion of the form

F (x) =
∑

i∈IO

gi





∑

j∈Ji

wi,jfj(x̄j) + aT
i x− bi



 + 1

2

n
∑

j=1

n
∑

k=1

hj,kxjxk, (2.1)

where x = (x1, x2, · · · , xn), within the “box” region

li ≤ xi ≤ ui, l ≤ i ≤ n (2.2)

(where either bound on each variable may be infinite), and where the variables are
required to satisfy the extra conditions
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i x− bi



 = 0 (i ∈ IE) (2.3)
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}
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∑

j∈Ji

wi,jfj(x̄j) + aT
i x− bi





{

≤
≥

}

ri, (i ∈ II) (2.4)

for some index sets I0, IE and II and (possibly infinite) values ri. The univariate
functions gi are known as group functions. The argument

∑

j∈Ji

wi,jfj(x̄j) + aT
i x− bi

is known as the i-th group. The functions fj , j = 1, · · · , ne, are called nonlinear element
functions. They are functions of the problem variables x̄j , where the x̄j are either small
subsets of x or such that fj has a large invariant subspace for some other reason. The
constants wi,j are known as weights, while the function aT

i x− bi is known as the linear

element for the i-th group. New The additional term 1

2

∑n

j=1

∑n

k=1
hj,kxjxk in the

objective function is the quadratic objective group; the leading 1

2
is there by convention.

It is more common to call the group functions in (2.3) equality constraint functions,
those in (2.4) inequality constraint functions and the sum of those in (2.1) the objective
function.

When stating a structured nonlinear optimization problem of the form (2.1)–(2.4),
we need to specify the group functions, linear and nonlinear elements and the way that
they all fit together.

2.1 Problem, Elemental and Internal Variables

A nonlinear element function fj is assumed to be a function of the problem variables x̄j ,
a subset of the overall variables x. Suppose that x̄j has nj components. Then one can
consider the nonlinear element function to be of the structural form fj(v1, · · · , vnj

),
where we assign v1 = x̄j1, · · · , vnj

= x̄jnj
. The elemental variables for the element

function fj are the variables v and, while we need to associate the particular values x̄j

with v, it is the elemental variables which are important in defining the character of
the nonlinear element functions.

5



As an example, the first nonlinear element function for a particular problem might
be

(x29 + x3 − 2x17)e
x29−x17 (2.5)

which has the structural form

f1(v1, v2, v3) = (v1 + v2 − 2v3)e
v1−v3 , (2.6)

where we need to assign v1 = x29, v2 = x3 and v3 = x17. For this example, there are
three elemental variables.

The example may be used to illustrate a further point. Although f1 is a function of
three variables, the function itself is really only composed of two independent parts; the
product of v1 +v2−2v3 with ev1−v3 , or, if we write u1 = v1 +v2−2v3 and u2 = v1−v3,
the product of u1 with eu2 . The variables u1 and u2 are known as internal variables
for the element function. They are obtained as linear combinations of the elemental
variables. The important feature as far as an optimization procedure is concerned is
that each nonlinear function involves as few internal variables as possible, as this allows
for compact storage and more efficient derivative approximation.

It frequently happens, however, that a function does not have useful internal vari-
ables. For instance, another element function might have structural form

f2(v1, v2) = v1 sin v2, (2.7)

where for example v1 = x6 and v2 = x12. Here, we have broken f2 down into as few
pieces as possible. Although there are internal variables, u1 = v1 and u2 = v2, they
are the same in this case as the elemental variables and there is no virtue in exploiting
them. Moreover it can happen that although there are special internal variables, there
are just as many internal as elemental variables and it therefore doesn’t particularly
help to exploit them. For instance, if

f3(v1, v2) = (v1 + v2) log(v1 − v2), (2.8)

where, for example, v1 = x12 and v2 = x2, the function can be formed as u1 log u2,
where u1 = v1 + v2 and u2 = v1 − v2. But as there are just as many internal variables
as elementals, it will not normally be advantageous to use this internal representation.
Finally, although an element function may have useful internal variables, the user may
decide not to exploit them. The optimization procedure should still work but at the
expense of extra storage and computational effort.

In general, there will be a linear transformation from the elemental variables to the
internal ones. For example in (2.6), we have

(

u1

u2

)

=

(

1 1 −2
1 0 −1

)





v1

v2

v3



 (2.9)

while in (2.7), we have
(

u1

u2

)

=

(

1 0
0 1

) (

v1

v2

)

(2.10)

In general the transformation will be of the form

u = Wv (2.11)

and this transformation is useful if the matrix W has fewer rows than columns.
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2.2 Element and Group Types

It is quite common for large nonlinear programming problems to be defined in terms
of many nonlinear elements. It is also common that these elements, although using
different problem variables, are structurally the same as each other. For instance, the
function

n−1
∑

i=1

(xixi+1)
i (2.12)

naturally decomposes into the sum of n − 1 group functions, α, α2, · · · , αn−1. Each
group is a nonlinear element function v1v2 of the two elemental variables v1 and v2

evaluated for different pairs of problem variables. More commonly, the elements may
be arranged into a few classes; the elements within each class are structurally the same.
For example, the function

n−1
∑

i=1

(xixi+1 + x1/xi)
i (2.13)

naturally decomposes into the sum of the same n − 1 group functions. Each group
is the sum of two nonlinear elements v1v2 (where v1 = xi and v2 = xi+1) and v1/v2

(where v1 = x1 and v2 = xi). A further common occurrence is the presence of elements
which have the same structure, but which differ in using different problem variables
and other auxiliary parameters. For instance, the function

n−1
∑

i=1

(ixixi+1)
i (2.14)

naturally decomposes into the sum of the same n− 1 group functions. Each group is
a nonlinear element p1v1v2 of the single parameter p1 and two elemental variables v1

and v2 evaluated for different values of the parameter and pairs of problem variables.
Any two elements which are structurally the same are said to be of the same type.

Thus examples (2.12) and (2.14) use a single element type, where as (2.13) uses two
types. When defining the data for problems of the form (2.1)–(2.4), it is unnecessary
to define each nonlinear element in detail. All that is actually needed is to specify the
characteristics of the element types and then to identify each fj by its type and the
indices of its problem variables and (possibly) auxiliary parameters.

The same principal may be applied to group functions. For example, the group
functions that make up

n−1
∑

i=1

(xixi+1)
2 (2.15)

have different arguments but are structurally all the same, each being of the form
gi(α) = α2. As a slightly more general example, the group functions for

n−1
∑

i=1

i(xixi+1)
2 (2.16)

have different arguments and depend upon different values of a parameter but are still
structurally all the same, each being of the form g(α) = p1α

2 for some parameter
p1. Any two group functions which are structurally the same are said to be of the
same type; the structural function is known as the group type and its argument is the
group-type variable. Once again, using group types makes the task of specifying the
characteristics of individual group functions more straightforward. The group type
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g(α) = α is known as the trivial type. Trivial groups occur very frequently and are
considered to be the default type. It is then only necessary to specify non-trivial group
types.

2.3 An Example

We now consider the small example problem,

minimize F (x1, x2, x3) ≡ x2
1 + x4

2x
4
3 + x2 sin(x1 + x3) + x1x3 + x2

subject to the bounds −1 ≤ x2 ≤ 1 and 1 ≤ x3 ≤ 2. There are a number of ways of
casting this problem in the form (2.1). Here, we consider partitioning F into groups as

(x1)
2 + (x2x3)

4 + (x2 sin(x1 + x3) + x1x3 + x2)
↑ ↑ ↑

group 1 group 2 group 3

Notice the following:

1. group 1 uses the non-trivial group function g1(α) = α2. The group contains a
single linear element; the element function is x1.

2. group 2 uses the non-trivial group function g2(α) = α4. The group contains a
single nonlinear element; this element function is x2x3. The element function has
two elemental variables, v1 and v2, say, (with v1 = x2 and v2 = x3) but there is
no useful transformation to internal variables.

3. group 3 uses the trivial group function g3(α) = α. The group contains two
nonlinear elements and a single linear element x2. The first nonlinear element
function is x2 sin(x1 + x3). This function has three elemental variables, v1, v2

and v3, say, (with v1 = x2, v2 = x1 and v3 = x3), but may be expressed in terms
of two internal variables u1 and u2, say, where u1 = v1 and u2 = v2 + v3. The
second nonlinear element function is x1x3, which has two elemental variables v1

and v2 (with v1 = x1 and v2 = x3) and is of the same type as the nonlinear
element in group 2.

Thus we see that we can consider our objective function to be made up of three
groups; the first and second are non-trivial (and of different types) so we will have
to provide our optimization procedure with function and derivative values for these at
some stage. There are three nonlinear elements, one from group two and two more from
group three. Again this means that we shall have to provide function and derivative
values for these. The first and third nonlinear element are of the same type, while the
second element is a different type. Finally one of these element types, the second, has
a useful transformation from elemental to internal variables so this transformation will
need to be set up.

2.4 A Second Example

We now consider a different sort of example, the unconstrained problem,

minimize F (x1, · · · , x1000) ≡
999
∑

i=1

sin(x2
i + x2

1000 + x1 − 1) + 1

2
sin(x2

1000). (2.17)
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Once again, there are a number of ways of casting this problem in the form (2.1),
but the most natural is to consider the argument of each sine function as a group
— the group function is then gi(α) = p1 sin α, 1 ≤ i ≤ 1000, for various values of
the parameter p1. Each group but the last has two nonlinear elements, x2

1000 and x2
i

1 ≤ i ≤ 999 and a single linear element x1 − 1. The last has no linear element and a
single nonlinear element, x2

1000. A single element type, v2
1 , of the elemental variable,

v1, covers all of the nonlinear elements.
Thus we see that we can consider our objective function to be made up of 1000

nontrivial groups, all of the same type, so we will have to provide our optimization
procedure with function and derivative values for these at some stage. There are 1999
nonlinear elements, two from each group except the last, but all of the same type and
again we shall have to provide function and derivative values for these. As there is so
much structure to this problem, it would be inefficient to pass the data group-by-group
and element-by-element. Clearly, one would like to specify such repetitious structures
using a convenient shorthand.

2.5 A Final Example

As a third example, consider the constrained problem in the variables x1, · · ·, x100 and
y

minimize 1

2
((x1 − x100)x2 + y)2 + 2x2

1 + 2x1x100 (2.18)

subject to the constraints

x1xi+1 + (1 + 2

i
)xix100 + y ≤ 0 (1 ≤ i ≤ 99), (2.19)

0 ≤ (sin xi)
2 ≤ 1

2
(1 ≤ i ≤ 100), (2.20)

(x1 + x100)
2 = 1 (2.21)

and the simple bounds
− 1 ≤ xi ≤ i (1 ≤ i ≤ 100). (2.22)

As before, there are a number of ways of casting this problem in the form (2.1)–(2.4).
We chose to decompose the problem as follows:

1. the objective function comprises two groups, the first of which uses the non-
trivial group function g(α) = 1

2
α2. This group contains a single linear element;

the element function is y. There is also a nonlinear element (x1 − x100)x2. This
element function has three elemental variables, v1, v2 and v3, say (with v1 = x1,
v2 = x100 and v3 = x2); there is a useful transformation from elemental to internal
variables of the form u1 = v1−v2 and u2 = v3 and the element function may then
be represented as u1u2. New The second group may be considered as a quadratic
objective group, and written as 1

2
(h1,1x1x1 + h1,100x1x100 + h100,1x100x1), where

h1,1 = 4 and h1,100 = h100,1 = 2.

2. The next set of groups, inequality constraints, x1xi+1 + (1 + 2/i)xix100 + y ≤
0 for 1 ≤ i ≤ 99 are of the form (2.4) with no lower bounds. Each uses the
trivial group function g(α) = α and contains a single linear element, y, and two
nonlinear elements xixi+1 and (1 + 2/i)xix100. Both nonlinear elements are of
the same type, p1v1v2, for appropriate variables v1 and v2 and parameter p1, and
there is no useful transformation to internal variables.
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3. The following set of groups, again inequality constraints, 0 ≤ (sin xi)
2 ≤ 1

2
for

1 ≤ i ≤ 100, are of the form (2.4) with both lower and upper bounds. Each
uses the non-trivial group function g(α) = α2 and contains a single nonlinear

element of the type sinv1 for an appropriate variable v1. Notice that the group
types for these groups and for the objective function group are both of the form
g(α) = p1α

2, for some parameter p1, and it may prove more convenient to use
this form to cover both sets of groups.

4. The last group, an equality constraint, (x1 + x100)
2 − 1 = 0, is of the form (2.3).

Again, this group uses the trivial group function g(α) = α and contains a single
linear element, −1, and a single nonlinear element of the type (v1 + v2)

2 for
appropriate elemental variables v1 and v2. Once more, a single internal variable,
u1 = v1 + v2 can be used and the element is then represented as u2

1.

Thus we see that we can consider our problem to be made up of 201 groups of two
different types as well as an quadratic objective group so we will have to provide our
optimization procedure with function and derivative values for these at some stage.
There are 200 nonlinear elements of four different types and again this means that
we shall have to provide function and derivative values for these. As for the previous
example, there is so much structure to this problem that it would be inefficient to pass
the data group-by-group and element-by-element. Again, we will introduce ways to
specify this repetitious structure using a convenient shorthand.

3 The Standard Data Input Format

We now consider how to pass the data for optimization problems to an optimization
procedure. In our description, we will concentrate on our third example, as presented
in Section 2.5; we will show how the input file might be specified for this example to
motivate the overall structure of such a file and then follow this with the general syntax
allowed.

The data which defines a particular problem is written in a file in a standard format.
It is intended that this data file is interpreted by an appropriate decoding program and
converted into a format useful for input to an optimization package or program. The
content of the file is specified line by line. As our format is intended to be compatible
with the MPS linear programming format [2], we preserve the MPS terminology and
call these lines cards.

A SIF comprises one or more files. The first of these files is known as the Standard
Data Input Format (SDIF). As its name suggests, data which describes how the parts
of the optimization problem are related, together with all fixed constants, are given in
this file. Indeed, a SIF for linear programming problems can be completely specified
by an MPS file; the SIF comprises a single section, the SDIF file, and that section is
merely the MPS file.

3.1 Introduction to the Standard Data Input Format

As we have just said, the data format is designed to be compatible with the MPS
linear programming format. There are, however, extensions to allow the user to input
nonlinear problems. The user must prepare an input file consisting of three types of
cards:

• Indicator cards, which specify the type of data to follow.
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• Data cards, which contain the actual data.

• Comment cards.

Indicator cards contain a simple keyword to specify the type of data that follows.
The first character of such cards must be in column 1; indicator cards are the only cards,
with the exception of comment cards, which start in column 1. Possible indicator cards
are given in Table 3.1.

Keyword Comments Presence Described in §
NAME mandatory 3.2.1

either
GROUPS mandatory 3.2.6
ROWS synonym for GROUPS 3.2.6
CONSTRAINTS synonym for GROUPS 3.2.6
VARIABLES mandatory 3.2.7
COLUMNS synonym for VARIABLES 3.2.7

or
VARIABLES mandatory 3.2.8
COLUMNS synonym for VARIABLES 3.2.8
GROUPS mandatory 3.2.9
ROWS synonym for GROUPS 3.2.9
CONSTRAINTS synonym for GROUPS 3.2.9
CONSTANTS optional 3.2.10
RHS synonym for CONSTANTS 3.2.10
RHS’ synonym for CONSTANTS 3.2.10
RANGES optional 3.2.11
BOUNDS optional 3.2.12
START POINT optional 3.2.13
QUADRATIC optional 3.2.14
HESSIAN synonym for QUADRATIC 3.2.14
QUADS synonym for QUADRATIC 3.2.14
QUADOBJ synonym for QUADRATIC 3.2.14
QSECTION synonym for QUADRATIC 3.2.14
ELEMENT TYPE optional 3.2.15
ELEMENT USES optional 3.2.16
GROUP TYPE optional 3.2.17
GROUP USES optional 3.2.18
OBJECT BOUND optional 3.2.19
ENDATA mandatory 3.2.2

Table 3.1: Possible indicator card

Indicator cards must appear in the order shown, except that the GROUPS and
VARIABLES sections may be interchanged to allow specification of the linear terms
by rows or columns. The cards CONSTANTS, RHS’, RHS, RANGES, BOUNDS, START POINT,
QUADRATIC, HESSIAN, QUADS, QUADOBJ, QSECTION, ELEMENT TYPE, ELEMENT USES, GROUP
TYPE, GROUP USES and OBJECT BOUND are optional.

The data cards are divided into six fields. The content of each field varies with
each type of data card as described in Section 3.2. Those in fields 1, 2, 3 and 5 must
always be left justified within the field. Field 1, which appears in columns 2 and 3,
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may contain a code (that is, a one or two character string which defines the expected
contents of the remaining fields on the card), fields 2, 3 and 5 may hold names and fields
4 and 6 might store numerical values. The numerical values are defined by up to 12
characters which may include a decimal point and an optional sign (a positive number
is assumed unless a – is given). The value may be followed by a decimal exponent,
written as an E or D, followed by a signed or unsigned one or two digit integer; the first
blank after the E or D terminates the field. The names of variables, nonlinear elements
or groups may be up to ten characters long. These names may include integer indices
(see Section 3.1.1).

Any card with the character * in column 1 is a comment card; the remaining
contents of the card are ignored. Such a card may appear anywhere in the data file.
In addition, completely blank cards are ignored when scanning the input file and may
thus be used to space the data. Finally, the presence of a $ as the first character in
fields 3 or 5 of a data card indicates that the content of the remaining part of the card
is a comment and will be ignored.

3.1.1 Names

One of the positive features of the MPS standard is the ability to give meaningful
names to problem constraints and variables. As our proposal is intended to be MPS
compatible, we too have this option. However, one of the less convenient features of
the MPS standard is the cumbersome way that repetitious structure is handled. In
particular, the name of each variable and constraint must be defined on a separate line,
and structure within constraints is effectively ignored when setting up the constraint
matrix. We consider it important to overcome this deficiency of the MPS standard when
formulating large-scale examples. One way is to allow variable, group and nonlinear
element names to have indices and to have syntactic devices which enable the user to
define many items at once.

Unless otherwise indicated, we allow any name which uses up to ten valid characters.
A valid character is any ASCII character whose decimal code lies in the range 32 to 126
(binary 0100000 to 11111110, hex 20 to 7E) (see, for instance [17]). This includes lower
and upper case roman alphabetic characters, the digits 0 to 9, the blank character and
other mathematical and grammatical symbols. A name can be one of the following:

1. a scalar name of the form ££££££££££ where each £ is a valid character type
excepting that the first £ cannot be a $. A completely blank string is also not
allowed. Futhermore, the strings ’SCALE’, ’MARKER’, ’DEFAULT’, ’INTEGER’ and
’ZERO-ONE’ are reserved for special operations.

2. an array name of the form name(index), where index is a list of integer index
names, name is a list of valid characters (the first character may not be a $) and
the maximum possible size of the expanded name does not exceed ten characters.
The list of index names must be of the form list1, list2, list3, where list1,
list2 and list3 are predefined index (parameter) names (see Section 3.2.3,
below) and all three indices are optional. The indices are only allowed to take
on integer values. Commas are only required as separators; the presence of an
open bracket “(” announces a list of indices and a close bracket “)” terminates
the list. An array name is expanded as namenumber1, number2, number3, where
numberi, i = 1, 2, 3 is the integer value allocated to the index listi at the
time of use.

As an example, the expanded form of the array name X(I,J,K) when I, J and K

have the values 3, 4 and 6 respectively would be X3,4,6, while it would take the form
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X-6,0,3 if I, J and K have the values -6, 0 and 3 respectively. However, X(I,J,K) could
not be expanded if I, J and K were each allowed to be as large as 100 as, for instance,
X100,100,100 is over ten characters long and thus not a valid expanded name.

An array item may be referred to by either its array name (so long as the index lists
have been specified) or by its expanded name. Thus, if I, J and K have been specified
as 2, 7 and 9 respectively, X(I,J,K) and X2,7,9 are identical.

If two separators (opening or closing brackets and commas) are adjacent in an array
name, the intervening index is deemed not to exist and is ignored when the name is
expanded. Thus, the expanded name of Y() is just Y, while that of Z(I,,K) is Z3,4 if
I is 3 and K is 4. Furthermore, any name which does not include the characters “(”,
“)” or “,” may be used as an array name and is its own expanded name. Thus the
name X may be a scalar or array name whereas W( and V, can only be scalar names.

We defer the definition of integer indices until Section 3.2.3.
Note that blanks are considered to be significant characters. Thus if − denotes a

blank, the names −x and x− are different. It is recommended that all names are left-
shifted within their relevant data fields to avoid possible user-instigated name recogni-
tion errors.

3.1.2 Fortran Names

A notable exception to the above are Fortran names. A Fortran name takes the form
of a sequence of one to six upper case letters or digits, the first of which must not be
a digit. These names are used in Sections 3.2.15–3.2.18, 4.4.1–4.4.3 and 5.2.1.

3.1.3 Numerical Values

The definition of a specific problem normally requires the use of numerical (integer or
real) data values. Such values can be specified in two ways. Firstly, the values may
simply occur as integer or floating-point numbers in data fields 4 and 6. Secondly,
values may be allocated to named parameters, known as integer or real parameters,
and a value subsequently used by reference to a particular integer or real parameter
name. This second method may only be used to allocate values on certain cards; when
this facility is used, the first character in field 1 on the relevant data card will be an X

or a Z. This latter approach is particularly useful when a value is to be used repeatedly
or if a value is to be changed within a do-loop (see Section 3.2.4).

We defer the definition of integer and real parameters until Section 3.2.3.

3.1.4 An Example

Before we give the complete syntax for an SDIF file, we give an illustrative example.
In order to exhibit as many constructs as possible, we consider how we might encode
the example in Section 2.5. We urge the reader to study this section in detail. As
always, there are many possible ways of specifying a particular problem; we give one
in Figures 3.1 and 3.2, pages 18 and 20. The horizontal and vertical lines are merely
included to indicate the extent of data fields. The actual widths of the fields are given
at the top of the figure, and the column numbers given at its foot.

The SDIF file naturally divides into two parts. In the first part, lines 2 to 39 of the
figure, we specify information regarding linear functions used in the example. In the
second part, lines 40 to 93, we specify nonlinear information. The first part is merely
an extension of the MPS input format; the second part is new.

The file must always start with a NAME card, on which a name (in this case EG3)
for the example may be given (line 1), and must end with an ENDATA card (line 93). A
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comment is inserted at the end of line 1 as to the source of the example. The character
$ identifies the remainder of the line as a comment; the comment is ignored when
interpreting the input file.

We next specify names of parameters which will occur frequently in specifying the
example (lines 2 to 5). In our case the integer and real parameters 1 and ONE are given
along with N, a problem dimension — here N is set to 100, but it would be trivial to
change the example in 6 to allow variables x1, . . . , xn for any n. We make a comment
to this effect on line 4; any card with the character * in column 1 is a comment card
and its content is ignored when interpreting the input file.

We now name the problem variables and groups (in our example objective function
and constraints) used. The groups may be specified before or after the variables.
We choose here to name the groups first. The objective function will be known as
OBJ (line 7); the character N in field 1 specifies that this is an objective function
group. The inequality constraints (2.19) and (2.20) are named CONLE1, . . . , CONLE99
and CONGE1, . . . , CONGE100 respectively. Rather than specify them individually, a do-
loop is used to make an array definition. Thus the constraints CONLE1, . . . , CONLE99 are
defined en masse on lines 9 to 11 with the do-loop index I running from the previously
defined value 1 to the value NM1. The integer parameter, NM1, is defined on line 8 to be
the sum of N and the value −1 and in our case will be 99. The characters XL in field 1
of line 10 indicate that an array definition is being made (the X) and that the groups
are less-than-or-equal-to constraints (the L). The do-loop introduced on line 9 with
the characters DO in field 1 is terminated on line 11 with the characters ND in its first
field. In a similar way, the constraints CONGE1, . . . , CONGE99 are defined all together on
lines 12 to 14; that these constraints involve bounds on both sides is taken care of by
considering them to be greater-than-or-equal-to constraints (XG) on line 13 and later
specifying the additional upper bounds in the RANGES section (lines 26 to 29). Finally,
the equality constraint (2.21) is to be called CONEQ (line 15); the character E in field 1
specifies that this is an equality constraint group.

Having named the groups, we next name the problem variables. At the same time,
we include the coefficients of all the linear elements used. The variables are named
X1, . . . , X100 and Y; an array declaration is made for the former set on lines 17 to 19
and Y is defined on line 20. The character X in field 1 of line 18 indicates that an array
definition is used. Only the objective function (2.18), inequality constraint (2.19) and
equality constraint groups (2.21) contain linear elements. As well as introducing Y, line
20 also specifies that the linear element associated with group OBJ (field 3) involves
variable Y, and that Y ’s coefficient in the linear element is 1.0 (field 4). A do-loop is
now used in lines 21 to 23 to show that the linear elements for constraints (2.19) also
use the variable Y. It is assumed that unless a variable is explicitly identified with a
linear element, the element is independent of that variable. Thus, although (2.21) uses
a linear element, the element is constant and need not be specified in the VARIABLES

section.
The only remaining part of the linear elements which must be specified is the

constant term. Again, only nonzero constants need be given. For our example, only
the equality constraint group (2.21) has a nonzero constant term and this data is
specified on lines 24 and 25. The string C1 in field 2 of line 25 is the name given to a
specific set of constants. In general, more than one set of constants may be specified in
the SDIF file and the relevant one selected in a postprocessing stage. Here, of course,
we only have one set.

As we have seen, the inequality constraint groups (2.20) are bounded from above
as well as from below. In the RANGES section (lines 26 to 30) we specify these upper
bounds (or range constraints as they are sometimes known). The numerical values 1

2
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are specified for each bound for the relevant groups in an array definition on line 28;
the string R1 in field 2 is once again a name given to a specific set of range values as it
is possible to define more than one set in the RANGES section.

We now turn to the simple bounds (2.22) which are specified in lines 30 to 36 of
the example. All problem variables are assumed to have lower bounds of zero and no
upper bounds unless otherwise specified. All but one of the variables for our example
have lower bounds of −1. We thus change the default value for the value of the lower
bound on line 31 - the set of bounds is named BND1. The character L specifies that
it is the lower bound default that is to be changed. The string ’DEFAULT’ in field 3
indicates that the default is being changed. The variable xi is given an upper bound
of i. We encode that in a do-loop on lines 32 to 35 of the figure. The do-loop index
I is an integer. We change its current value to a real on line 33 and assign that value
as the upper bound on line 34. The character Z in field 1 of this line indicates that an
array definition is being made and that the data is taken from a parameter in field 5
(as opposed to a specified numerical value in field 4) and the character U specifies that
the upper bound value is to be assigned. The variable y is unbounded or, as it is often
known, free. This is specified on line 36, the string FR in field 1 indicating that Y is
free.

The final “linear” piece of information given is an estimate of the solution to the
problem (if known) or at least a set of values from which to start a minimization
algorithm. This information is given on lines 37 to 39. For our problem, we choose the
values xi = 1

2
, 1 ≤ i ≤ 100 and y = 0. Unless otherwise specified, all starting values

take a default of zero. We change that default on line 38 to 1

2
— the set of starting

values are named START1 — and then specify the individual value for the variable Y on
line 39.

We now specify the nonlinear information. New Firstly, we recall that there is a
quadratic objective group, x2

1 + 2x1x100 ≡ 1

2
(4x1x1 + 2x1x100 + 2x100x1). We need to

specify the nonzero coefficients of the terms xjxk, and in our cases these are h1,1 = 4
and h1,100 = h100,1 = 2. The rule that we adopt is that there is no need to supply both
nonzeros hj,k and hk,j since they are the same, and that one (whichever is unimportant)
suffices. Thus h1,1 = 4 and we (arbitrarily) choose to give h1,100 = 2. In the QUADRATIC
section on lines 39a to 39b, we indicate that the quadratic objective has two terms
involving x1; the coefficient 4 is given for the x2

1 ≡ x1x1 term, while that for the x1x100

term is assigned the value 2.
Next, we saw in Section 2.5 that there are four element types for the problem, being

of the form (i) (v1 − v2)v3, (ii) p1v1v2, (iii) sin v1 and (iv) (v1 + v2)
2. In the ELEMENT

TYPE section on lines 40 to 48, we record details of these types. We name the four
types (i)–(iv) 3PROD, 2PROD, SINE and SQUARE respectively. For 3PROD, we define the
elemental variables (lines 41 and 42) to be V1, V2 and V3 and the internal variables
(line 43) to be U1 and U2. Elemental variables may be defined, two to a line, on lines for
which field 1 is EV. Internal variables, on the other hand, are defined on lines with IV

in field 1. Similar definitions are made for 2PROD (line 44), SINE (line 46) and SQUARE

(line 47). The type 2PROD also makes use of a parameter p1. This is named P1 on line
45 for which field 1 reads EP.

Having specified the element types, we next specify individual nonlinear elements
in the ELEMENT USES section. As we have seen, the objective function group uses a
single nonlinear element of type 3PROD. We name this particular element OBJ1. On line
50, the character T in field 1 indicates that the OBJ1 is of type 3PROD. The assignment
of problem to elemental variables is made on lines 51 to 53. Problem variables X1 and
X2 are assigned to elemental variables V1 and V3; the assignment is indicated by the
character V in field 1. In order to assign x100 (or in general xn) to v2, we assign the
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array entry X(N) to V2. Notice that as an array element is being used, this must be
specially flagged (ZV in field 1) as otherwise the wrong variable (called X(N) rather
than X100, which is the expanded form of X(N)) would be assigned. There are two
nonlinear elements for each inequality constraint group (2.19), each being of the same
type 2PROD. We name these elements CLEA1, . . . , CLEA99 and CLEB1, . . . , CLEB99. The
assignments are made on lines 54 to 67 within a do-loop. On lines 56 and 60 the
elements are named and their types assigned.

As array assignments are being used, field 1 for both lines contains the string XT.
The elemental variables are then associated with problem variables on lines 57–58 and
61–62 respectively. Again array assignments are used and field 1 contains the string
ZV. Notice that on line 58 v2 is assigned the problem variable xi+1, where the index
IP1 is defined as the sum of the index I and the integer value 1 on line 55. It remains
to assign values for the parameter p1 for each element. This is straightforward for the
elements CLEA1, . . . , CLEA99 as the required value is always 1 and the assignment is
made on line 59 on a card with first field XP. The remaining elements have varying
parameter values 1 + 2/i. This value is calculated on lines 63 to 65 and assigned on
line 66. Line 63 assigns REALI to have the floating point value of the index I. This
new value is then divided into the value 2 on line 64 and the value assigned to ONE

is added to the resulting value on the final line. Thus the parameter 2OVAI+1 holds
the required value of p1 and the array assignment is made on line 66. On this line the
string ZP indicates that an array assignment is being made, taking its value from the
parameter 2OVAI+1 in field 4 (the Z) and that the elemental parameter P1 in field 3
is to be assigned (the P). The definition of the nonlinear elements for the remaining
constraint groups is straightforward. The inequality constraints (2.20) each use a single
element, named CGE1, . . . , CGE100, of type SINE and the appropriate array assignments
are made on lines 68 to 70. Finally, the equality constraint (2.21) is named CEQ1 and
typed SQUARE with appropriate elemental variable assignments on lines 72 to 74.

We next need to specify the nontrivial group types. This is done in the GROUP

TYPE section on lines 75 to 77. We saw in Section 2.5 that a single nontrivial group,
p1α

2, is required. On line 76, the name PSQUARE is given for the type and the group
type variable α is named ALPHA. The string GV pin field 1 indicates that a type and
its variable are to be defined. On the following line field 1 is GP and this is used to
announce that the group type parameter p1 is named P1.

Finally, we need to allocate nonlinear elements to groups and specify what type the
resulting groups are to be. This takes place within the GROUP USES section which runs
from line 78 to 90. The objective function group is nontrivial and its type is announced
on line 79. The group uses the single nonlinear element OBJ1 specified on line 80 and the
group-type parameter p1 is set to the value 1

2
on the next line. The characters T, E and

P in the first fields of these three cards announce their purposes. The inequality groups
(2.19) each use two nonlinear elements, but the groups themselves are trivial (and thus
their types do not have to be made explicit). The assignment of the elements to each
group is made in an array definition on lines 82 to 84; line 83 is flagged as assigning
elements to a group with the string XE in field 1. The second set of inequality constraints
(2.20) use the nontrivial group type PSQUARE with parameter value 1. Each group uses
a single nonlinear element and the appropriate array assignments are contained on lines
85 to 89. Lastly the trivial equality constraint group (2.21) is assigned the nonlinear
element CEQ1 on line 90.

The definition of the problem is now complete. However, it often helps the intended
minimization program if known lower and upper bounds on the possible values of the
objective function can be given. For our example, the objective function (2.18) cannot
be smaller than zero. This data is specified on lines 91 and 92. The string LO in field
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1 of line 92 indicates that a lower bound is known for the value of (2.18). The string
OBOUND in field 2 of this line is a name given to this known bound. The value of the
lower bound now follows in field 4. No upper bound need be specified as the function
is initially assumed to lie between plus and minus infinity.

17



<> <—10—> <—10—> <—-12—-> <—10—><—-12—->
line F.1 Field 2 Field 3 Field 4 Field 5 Field 6

1 NAME EG3 $ The example of §1.6
2 IE 1 1
3 IE N 100
4 *Variants of §1.6 obtained by choice of N on previous card
5 REONE 1.0
6 GROUPS
7 N OBJ
8 IA NM1 N -1
9 DOI 1 NM1

10 XL CONLE(I)
11 ND
12 DOI 1 N
13 XGCONGE(I)
14 ND
15 E CONEQ
16 VARIABLES
17 DOI 1 N
18 X X(I)
19 ND
20 Y OBJ 1.0
21 DOI 1 NM1
22 X Y CONLE(I) 1.0
23 ND
24 CONSTANTS
25 C1 CONEQ 1.0
26 RANGES
27 DOI 1 NM1
28 X R1 CONGE(I) 0.5
29 ND
30 BOUNDS
31 LOBND1 ’DEFAULT’-1.0
32 DOI 1 N
33 RI REALI I
34 ZU BND1 X(I) REALI
35 ND
36 FR BND1 Y
37 START POINT
38 START1 ’DEFAULT’0.5
39 START1 Y 0.0

39a QUADRATIC
39b X1 X1 4.0 X100 2.0
40 ELEMENT TYPE
41 EV3PROD V1 V2
42 EV3PROD V3
43 IV 3PROD U1 U2
44 EV2PROD V1 V2
45 EP 2PROD P1
46 EVSINE V1
47 EVSQUARE V1 V2
48 IV SQUARE U1
↑↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
1 2 3 5 10 14 15 24 25 36 40 49 50 61

Figure 3.1: SDIF file (part 1) for the example of Section 2.5
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3.2 Indicator and Data Cards

We now give details of the indicator cards and the data cards which follow them.

3.2.1 The NAME Indicator Card

The NAME indicator card is used to announce the start of the input data for a particular
problem. The user may specify a name for the problem; this name is entered on the
indicator card in field 3 and may be at most 8 characters long. The syntax for the
NAME card is given in Figure 3.3.

3.2.2 The ENDATA Indicator Card

The ENDATA indicator card simply announces the end of the input data. The data for
a particular problem, in the form of indicator and data cards, must lie between a NAME

and an ENDATA card. The syntax for the ENDATA card is given in Figure 3.4.

3.2.3 Integer and Real Parameters

We shall use the word parameter to mean the name given to any quantity which is
associated with a specified numerical value. The numerical value will be known as the
parameter value. Integer and real values may be associated with parameters in two
ways. The easiest way is simply to set a parameter to a specified parameter value,
or to obtain a parameter from a previously defined parameter by simple arithmetic
operations (addition, subtraction, multiplication and division). The second way is
to have a parameter value specified in a do-loop, or to obtain a parameter from one
specified in a do-loop (see Section 3.2.4 below).

The syntax for associating a parameter with a specific value is given in Figure 3.5.
The two character string in data field 1 (F.1) specifies the way in which the param-

eter value is to be assigned. If the first of these characters is a I, the assigned value is
an integer; the parameter will be referred to as an integer parameter or integer index.

Alternatively, if the first of these characters is an R or an A, the assigned value is a real
and the parameter will be called a real parameter.

If the string is IE, the integer parameter int-p-name named in field 2 is to be given
the integer value specified in field 4. The parameter may be up to ten characters long,
and the integer value can occupy up to twelve positions.

If the string is IR, the integer parameter value named in field 2 is to be assigned
the value of the nearest integer (closer to zero) to the value of the real parameter
rl--p-name specified in field 3. The parameter appearing in field 3 must have already
been assigned a value.

If the string is IA, the integer parameter named in field 2 is to be formed by adding
the value of the parameter int-p-name referred to in field 3 to the integer value specified
in field 4. The parameter appearing in field 3 must have already been assigned a value.

If the string is IS, the integer parameter named in field 2 is to be formed by
subtracting the value of the parameter int-p-name referred to in field 3 from the
integer value specified in field 4. The parameter appearing in field 3 must have already
been assigned a value.

If the string is IM, the value of the integer parameter named in field 2 is to be
obtained by multiplying the value already specified for the parameter in field 3 by the
integer value specified in field 4. Once again, the parameter appearing in field 3 must
have already been assigned a value.
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<> <—10—> <—10—> <—-12—-> <—10—><—-12—->
line F.1 Field 2 Field 3 Field 4 Field 5 Field 6
49 ELEMENT USES
50 T OBJ1 3PROD
51 V OBJ1 V1 X1
52 ZV OBJ1 V2 X(N)
53 V OBJ1 V3 X2
54 DOI 1 NM1
55 IA IP1 I 1
56 XTCLEA(I) 2PROD
57 ZV CLEA(I) V1 X(1)
58 ZV CLEA(I) V2 X(IP1)
59 XPCLEA(I) P1 1.0
60 XTCLEB(I) 2PROD
61 ZV CLEB(I) V1 X(I)
62 ZV CLEB(I) V2 X(N)
63 RI REALI I
64 RD2OVERI REALI 2.0
65 R+2OVAI+1 2OVERI ONE
66 ZP CLEB(I) P1 2OVAI+1
67 ND
68 DOI 1 N
69 XTCGE(I) SINE
70 ZV CGE(I) V1 X(I)
71 ND
72 T CEQ1 SQUARE
73 V CEQ1 V1 X1
74 ZV CEQ1 V2 X(N)
75 GROUP TYPE
76 GVPSQUARE
77 GPPSQUARE P1
78 GROUP USES
79 T OBJ SQUARE
80 E OBJ OBJ1
81 P OBJ P1 0.5
82 DOI 1 NM1
83 XECONLE(I) CLEA(I) CLEB(I)
84 ND
85 DOI 1 N
86 XTCONGE(I) PSQUARE
87 XECONGE(I) CGE(I)
88 XPCONGE(I) P1 1.0
89 ND
90 E CONEQ CEQ1
91 OBJECT BOUND
92 LOOBOUND 0.0
93 ENDATA
↑↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
1 2 3 5 10 14 15 24 25 36 40 49 50 61

Figure 3.2: SDIF file (part 2) for the example of Section 2.5
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<—8–>
Field 3

NAME prob-nam
↑ ↑
15 24

Figure 3.3: The indicator card NAME

ENDATA

Figure 3.4: The indicator card ENDATA

<> <—10—> <—10—> <—-12—-> <—10—>
F.1 Field 2 Field 3 Field 4 Field 5
IE int-p-name numerical-vl
IR int-p-namerl–p-name
IA int-p-nameint-p-name numerical-vl
IS int-p-nameint-p-name numerical-vl
IM int-p-nameint-p-name numerical-vl
ID int-p-nameint-p-name numerical-vl
I= int-p-nameint-p-name
I+ int-p-nameint-p-name int-p-name
I- int-p-nameint-p-name int-p-name
I* int-p-nameint-p-name int-p-name
I/ int-p-nameint-p-name int-p-name
RE rl–p-name numerical-vl
RI rl–p-name int-p-name
RA rl–p-name rl–p-name numerical-vl
RS rl–p-name rl–p-name numerical-vl
RMrl–p-name rl–p-name numerical-vl
RD rl–p-name rl–p-name numerical-vl
RF rl–p-name funct-namenumerical-vl
R= rl–p-name rl–p-name
R+ rl–p-name rl–p-name rl–p-name
R- rl–p-name rl–p-name rl–p-name
R* rl–p-name rl–p-name rl–p-name
R/ rl–p-name rl–p-name rl–p-name
R( rl–p-name funct-name rl–p-name
AE r-p-a-name numerical-vl
AI r-p-a-nameint-p-name
AA r-p-a-namer-p-a-namenumerical-vl
AS r-p-a-namer-p-a-namenumerical-vl
AMr-p-a-namer-p-a-namenumerical-vl
AD r-p-a-namer-p-a-namenumerical-vl
AF r-p-a-namefunct-namenumerical-vl
A=r-p-a-namer-p-a-name
A+r-p-a-namer-p-a-name r-p-a-name
A- r-p-a-namer-p-a-name r-p-a-name
A* r-p-a-namer-p-a-name r-p-a-name
A/ r-p-a-namer-p-a-name r-p-a-name
A( r-p-a-namefunct-name r-p-a-name
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 24 25 36 40 49

Figure 3.5: Possible cards for specifying parameter values

21



If the string is ID, the value of the integer parameter named in field 2 is to be
obtained by dividing the integer value specified in field 4 by the value already specified
for the parameter in field 3. Once again, the parameter appearing in field 3 must have
already been assigned a value.

If the string is I=, the value of the integer parameter named in field 2 is to be set
to the integer value specified for the parameter in field 3. The parameter appearing in
field 3 must have already been assigned a value.

If the string is I+, the value of the integer parameter named in field 2 is to be
calculated by adding the values of the integer parameters int-p-name referred to in
fields 3 and 5. The parameters appearing in fields 3 and 5 must have already been
assigned values.

If the string is I-, the value of the integer parameter named in field 2 is to be
calculated by subtracting the value of the integer parameters int-p-name referred to
in field 5 from that in field 3. The parameters appearing in fields 3 and 5 must have
already been assigned values.

If the string is I*, the value of the integer parameter named in field 2 is to be formed
as the product of the values already specified for the integer parameters in fields 3 and
5. The parameters appearing in fields 3 and 5 must have already been assigned values.

Finally, if the string is I/, the value of the integer parameter named in field 2 is to
be formed by dividing the value specified for the integer parameters in field 3 by that
specified for the integer parameters in field 5. Once again, the parameters appearing
in fields 3 and 5 must have already been assigned values.

Note that, as an array name can only be a maximum of 10 characters long, any
integer parameter which is to be the index of an array can only be at most seven char-
acters in length. Furthermore, such a parameter name may not include the characters
“(”, “)” or “,”.

If the string is RE, the real parameter rl--p-name named in field 2 is to be given
the real value specified in field 4. The parameter may be up to ten characters long,
and the real value can occupy up to twelve positions.

If the string is RI, the real parameter value named in field 2 is to be assigned the
equivalent floating point value of the integer parameter int-p-name specified in field 3.
The parameter appearing in field 3 must have already been assigned a value.

If the string is RA, the value of the real parameter named in field 2 is to be formed
by adding the value of the real parameter rl--p-name referred to in field 3 to the real
value specified in field 4. The parameter appearing in field 3 must have already been
assigned a value.

If the string is RS, the value of the real parameter named in field 2 is to be formed
by subtracting the value of the real parameter rl--p-name referred to in field 3 from
the real value specified in field 4. The parameter appearing in field 3 must have already
been assigned a value.

If the string is RM, the value of the parameter named in field 2 is to be formed
by multiplying the value specified for the real parameter in field 3 by the real value
specified in field 4. Once again, the parameter appearing in field 3 must have already
been assigned a value.

If the string is RD, the value of the parameter named in field 2 is to be formed by
dividing the real value specified in field 4 by the value specified for the real parameter
in field 3. The parameter appearing in field 3 must have already been assigned a value.

If the string is RF, the value of the parameter named in field 2 is to be formed
by evaluating the function named in field 3 at the real value specified in field 4. The
function funct-name — and its mathematical equivalent f(x) — may be one of: ABS

(f(x) = |x|), SQRT (f(x) =
√

x), EXP (f(x) = ex), LOG (f(x) = loge x), LOG10 (f(x) =
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log10 x), SIN (f(x) = sin x), COS (f(x) = cosx), TAN (f(x) = tan x), ARCSIN (f(x) =
sin−1 x), ARCCOS (f(x) = cos−1 x), ARCTAN (f(x) = tan−1 x), HYPSIN (f(x) = sinh x),
HYPCOS (f(x) = coshx) or HYPTAN (f(x) = tanhx). Certain of the functions may only
be evaluated for arguments lying within restricted ranges. The argument for SQRT

must be non-negative, those for LOG and LOG10 must be strictly positive, and those for
ARCSIN and ARCCOS must be no larger than one in absolute value.

If the string is R=, the parameter value named in field 2 is to be assigned the value
of the real parameter rl--p-name referred to in field 3. The parameter appearing in
field 3 must have already been assigned a value.

If the string is R+, the parameter value named in field 2 is to be formed as the
sum of the values of the real parameters rl--p-name referred to in fields 3 and 5. The
parameters appearing in fields 3 and 5 must have already been assigned values.

If the string is R-, the parameter value named in field 2 is to be formed by subtract-
ing the value of the real parameter rl--p-name referred to in field 5 from the value
of that referred to in field 3. The parameters appearing in fields 3 and 5 must have
already been assigned values.

If the string is R*, the value of the real parameter named in field 2 is to be formed
as the product of the values already specified for the real parameters in fields 3 and
5. Once again, the parameters appearing in fields 3 and 5 must have already been
assigned values.

If the string is R/, the parameter value named in field 2 is to be formed by dividing
the value of the real parameter rl--p-name referred to in field 3 by the value of that
referred to in field 5. The parameters appearing in fields 3 and 5 must have already
been assigned values.

Finally, if the string is R(, the value of the parameter named in field 2 is to be
formed by evaluating the function named in field 3 at the value of the real parameter
rl--p-name specified in field 5. The function (and its mathematical equivalent) may be
any of those named in the RF paragraph and the restrictions on the allowed argument
ranges given above still apply.

If the first character in field 1 is an A, an array of real parameters is to be de-
fined. The particular type of definition is as for the R cards, excepting that any name,
r-p-a-name, referred to in fields 2, 3 or 5, with the exception of integer parameters
named in field 3 of AI cards and functions named in the same field of AF and A( cards,
must be a real parameter array name with a valid index.

Parameter assignments may be made at any point within the SDIF file between
the NAME and ENDATA indicator cards. It is anticipated that parameters will be used
to store values such as the total number of variables and groups, which are used later
in array definitions, and to allow a user to enter regular and repetitious data in a
straightforward and compact way.

3.2.4 Do-loops

A do-loop may occur at any point in the GROUPS, VARIABLES, CONSTANTS, RANGES,
BOUNDS, START POINT, NewQUADRATIC, ELEMENT USES or GROUP USES sections. Do-
loops are used to make array definitions, that is, to make compact definitions of several
quantities at once. The syntax required for do-loops is given in Figure 3.6.

The two-character string in data field 1 specifies either the start or the end of
a do-loop. The start of a loop is indicated by the string DO. In this case an integer
parameter named in field 2 is defined to take values starting from the integer parameter
value given in field 3 and ending with the last value before the integer parameter value
given in field 5 has been surpassed. The parameters named in fields 3 and 5 must
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<><—10—> <—10—> <—10—>
F.1 Field 2 Field 3 Field 5
DOint-p-nameint-p-name int-p-name
DI int-p-nameint-p-name

one or more array definitions
ODint-p-name
ND
↑↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 24 40 49

Figure 3.6: Syntax for do-loops

have been defined on previous data cards. The parameter name defined in field 2 can
occupy up to ten locations. If the next data card does not have the characters DI as its
first field, the parameter defined on the DO card, iloop say, will take all integer values
starting from that given in field 3, say istart, and ending on that in field 5, iend say.
If istart is larger than iend, the loop will be skipped.

If the data card following a DO card has the string DI in field 1, the do-loop parameter
named in field 2 is to be incremented by the amount, incr say, specified for the integer
parameter given in field 3. Once again, the parameter in field 3 must have been
previously defined. The index iloop will now take values

iloop = istart+ j · incr

for all positive j for which iloop lies between (and including) istart and iend. If
incr is negative and istart is larger than iend, the parameter specifies a decreasing
sequence of values. If incr is positive and istart is larger than iend, or if incr is
negative and istart is smaller than iend, the loop will be skipped.

Once a do-loop has been started, any array definitions which use its do-loop index
specify that the definition is to be made for all values of the integer parameter specified
in the loop. Loops can be nested up to three deep; this corresponds to the maximum
number of allowed indices in an array index list.

A do-loop must be terminated. A particular loop can be terminated on a data
card in which field 1 contains the characters OD; the name of the loop parameter must
appear in field 2. Alternatively, all loops may be terminated at once using a data card
in which field 1 contains the characters ND.

In addition, parameter assignments with the syntax given in Figure 3.5 — that is,
cards whose first field are IE, IR, IA, IS, IM, ID, I=, I+, I-, I*, I/, RE, RI, RA, RS,
RM, RD, RF, R=, R+, R-, R*, R/, R(, AE, AI, AA, AS, AM, AD, AF, A=, A+, A-, A*, A/ or R(

— may be inserted at any point in a do-loop; it is only necessary that a parameter is
defined prior to its use.

Note that array definitions may occur both within and outside do-loops; all that is
required for a successful array definition is that the integer indices used have defined
values when they are needed. The use of do-loops is illustrated in Section 3.4.

3.2.5 The Definition of Variables and Groups

In the MPS standard, the constraint matrix, the matrix of linear elements, is input
by columns; firstly the names of the constraints are specified in the ROWS section and
then variable names and the corresponding matrix coefficients are set one at a time in
the COLUMNS section. While there is some justification for this form of matrix entry for
linear programming problems — the principal solution algorithm for such problems,
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the simplex method [3], is usually column oriented — there seems no good reason why
the coefficients of linear elements might not also be input by rows. After all, it is more
natural to think of specifying the constraints for a problem one at a time. Furthermore,
requiring that a complete row or column has been specified before the next may be
processed is unnecessarily restrictive.

We thus allow the data to be input in a either a group-wise (row-wise) or variable-
wise (column-wise) fashion. In a group/row-wise scheme, one or two coefficients and
their variable/column names are specified for a given group/row; for a variable/column-
wise scheme, one or two coefficients and their group/row names are specified for a
given variable/column. We do, however, still require that in a group/row-wise storage
scheme, the names of all the variables/rows which appear in linear elements are com-
pletely specified before the coefficients are input. Similarly, in a variable/column-wise
storage scheme, the names of all the groups/rows which have a linear element must be
completely specified before the coefficients are input. This allows for some checking of
the input data.

If the groups/rows are specified first, there is no requirement that variables/columns
are input one at a time (but of course they may be). When processing the data file,
variable/column names should be inspected to see if they are new or where they have
appeared before. Likewise, if the variables/columns are specified first, there is no
requirement that groups/rows are ordered on input. The coordinates of new data values
can then be stored as a linked triple (group/row, variable/column, value). Conversion
from such a component-wise input scheme to a row or column based storage scheme
may be performed very efficiently if desired (see [5, pp30–31], and subroutine MC39 in
the Harwell Subroutine Library).

If a variable/column-wise input scheme is to be adopted, the data file will contain a
GROUPS/ROWS/CONSTRAINTS indicator card and section followed by a VARIABLES/COLUMNS
card and section. The allowed data cards are discussed in Section 3.2.6 and Sec-
tion 3.2.7. If a group/row-wise input scheme is to be adopted, the data file will con-
tain a VARIABLES/COLUMNS indicator card and section followed by a GROUPS/ROWS/-

CONSTRAINTS card and section. The data cards for this scheme are discussed in Sec-
tion 3.2.8 and Section 3.2.9.

3.2.6 The GROUPS, ROWS or CONSTRAINTS Data Cards
(variable/column-wise)

The GROUPS, ROWS and CONSTRAINTS indicator cards are used interchangeably to an-
nounce the names of the groups which make up the objective function or, for con-
strained problems, the names of the constraints (or rows, as they are often known in
linear programming applications). The user may give a scaling factor for the groups or
constraints. In addition, groups which are linear combinations of previous groups may
be specified. The syntax for the data cards which follow these indicator cards is given
in Figure 3.7.

The one- or two-character string in data field 1 specifies the type of group, row or
constraint to be input. Possible values for the first character are:

N : the group is to be specially marked (for constrained problems, the group/row is
an objective function group/row).

G : the group is to use an extra “artificial” variable; this variable will only occur in
this particular group, will be non-negative and its value will be subtracted from
the group function. For constrained problems, this is equivalent to requiring
the constraint/row be non-negative; the extra variable is then a surplus variable
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<> <—10—> <—10—> <—-12—-> <—10—> <—-12—->
F.1 Field 2 Field 3 Field 4 Field 5 Field 6

GROUPS or
ROWS or
CONSTRAINTS
N group-name$$$$$$$$$$numerical-vl
G group-name$$$$$$$$$$numerical-vl
L group-name$$$$$$$$$$numerical-vl
E group-name$$$$$$$$$$numerical-vl
XNgroup-name$$$$$$$$$$numerical-vl
XGgroup-name$$$$$$$$$$numerical-vl
XL group-name$$$$$$$$$$numerical-vl
XEgroup-name$$$$$$$$$$numerical-vl
ZN group-name$$$$$$$$$$ r-p-a-name
ZG group-name$$$$$$$$$$ r-p-a-name
ZL group-name$$$$$$$$$$ r-p-a-name
ZE group-name$$$$$$$$$$ r-p-a-name
DNgroup-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
DGgroup-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
DL group-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
DEgroup-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 24 25 36 40 49 50 61

Figure 3.7: Possible data cards for GROUPS, ROWS or CONSTRAINTS(column-wise)

and whether it is used explicitly (considered as a problem variable) or implicitly
will depend upon the optimization technique to be used. Thus, if the problem
variables are x, and the k-th group has a linear element aT

k x − bk, the linear
element that will be passed to the optimization procedure could be aT

k x−yk−bk,
for some non-negative variable yk.

L : the group is to use an extra “artificial” variable; this variable will only occur in
this particular group, will be non-negative and its value will be added to the
group function. For constrained problems, this is equivalent to requiring the
constraint/row be non-positive; the extra variable is then a slack variable and
may be used explicitly or implicitly by the optimization procedure. Thus, if the
linear element is as specified above, the linear element that will be passed to the
optimization procedure could be aT

k x + yk − bk, for some non-negative variable
yk.

E : the group is a normal one (for constrained problems, the row/constraint is an
equality),

X and Z : an array of groups are to be defined at once. When the first character is an
X or Z, the second character may be one of N, G, L or E. The resulting array of
groups then each has the characteristics of an N, G, L or E group as just described.

D : the group is to be formed as a linear combination of two previous groups. When
the first character is a D, the second character may be one of N, G, L or E. The
resulting group then has the characteristics of an N, G, L or E group as just
described.

The string group-name in data field 2 gives the name of the group (or row or
constraint) under consideration. This name may be up to ten characters long, excepting
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that the name ‘SCALE’ is not allowed. For X data cards, the expanded array name
must be valid and the integer indices must have been defined in a parameter assignment
(see Section 3.2.3).

The string $$$$$$$$$ in data field 3 may be blank; this happens when field 2 is
merely announcing the name of a group. If it is not blank, it is used for two purposes.

• It may be used to announce that all the entries (if any) in the linear element for
the group under consideration are to be scaled, that is divided by a constant scale
factor; in this case field 3 will contain the string ‘SCALE’. If the first character
in field 1 is a Z, the string in data field 5 gives the name of a previously defined
real parameter and the numerical value associated with this parameter gives the
scale factor. Otherwise, the string numerical-vl, occupying up to 12 locations
in data field 4, contains the scale factor. Fields 5 and 6 are not then used.

• If the first character in field 1 is a D, the current group is to be formed as a linear
combination of the groups mentioned in fields 3 and 5; the multiplication factors
are then recorded in fields 4 and 6 respectively. Thus we will have

group in field 2 = group in field 3 ∗ field 4 + group in field 5 ∗ field 6.

In this case, the names of the groups in fields 3 and 5 must have already been
defined. The multiplication factors may occupy up to 12 locations in fields 4 and
6.

3.2.7 The VARIABLES or COLUMNS Data Cards
(Variable/Column-Wise)

The VARIABLES or COLUMNS indicator cards are used interchangeably to announce the
(problem) variables for the minimization. In addition, the entries for the linear elements
are input here. The user may also give a scaling factor for the entries in any column.
The syntax for data following this indicator card is given in Figure 3.8.

<><—10—> <—10—> <—-12—-> <—10—> <—-12—->
F.1 Field 2 Field 3 Field 4 Field 5 Field 6

VARIABLES or
COLUMNS

varbl-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
X varbl-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
Z varbl-name$$$$$$$$$$ r-p-a-name
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 24 25 36 40 49 50 61

Figure 3.8: Possible data cards for VARIABLES or COLUMNS (column-wise)

The string varbl-name in data field 2 gives the name of the variable (or column)
under consideration. This name may be up to ten characters long excepting that the
name ‘SCALE’ is not allowed. If data field 1 holds the character X or Z, an array of
variables is to be defined. In this case, the expanded array name of the variables (or
columns) must be valid and the integer indices must have been defined in a parameter
assignment (see Section 3.2.3).

The string $$$$$$$$$$ in data field 3 is used for five purposes.

• If the string is empty, the card is just defining the name of a problem variable.
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• It may be used to specify that the variable mentioned in field 2 occurs in the
linear element for the group given in field 3. In this case, the string in field 3
must have been defined in the GROUPS section. If an array definition is being
made, the string in field 3 must be an array name.

• It may be used to announce that all the entries in the linear elements for the
variable under consideration are to be scaled; in this case field 3 will contain the
string ‘SCALE’.

• It may be used to specify that the variable(s) mentioned in field 2 is(are) only al-
lowed to take integer values. In this case field 3 will contain the string ’INTEGER’.

• It may be used to specify that the variable(s) mentioned in field 2 is(are) only
allowed to take the values 0 or 1. In this case field 3 will contain the string
’ZERO-ONE’.

A numerical value, whose purpose depends on the string in the previous field, is now
specified. On Z cards, the value is that previously associated with the real parameter
r-p-a-name in field 5. On other cards, the actual numerical value numerical-vl may
occupy up to 12 characters in data field 4.

If field 3 indicates that an entry for the linear element for a group is to be defined,
the specified numerical value gives the coefficient of that entry. If, on the other hand,
field 3 indicates that all entries for the variable in field 2 are to be scaled, the specified
value gives the scale factor, that is the factor by which each entry is to be divided.

On non Z cards, the strings in fields 5 and 6 are optional and are used exactly as
for strings 3 and 4 to define further entries or a scale factor.

3.2.8 The VARIABLES or COLUMNS Data Cards
(Group/Row-Wise)

The VARIABLES or COLUMNS indicator cards are used interchangeably to announce the
(problem) variables for the minimization. The user may also give a scaling factor for
the entries in the column. The syntax for data following this indicator card is given in
Figure 3.9.

<><—10—> <—10—> <—-12—-> <—10—><—-12—->
F.1 Field 2 Field 3 Field 4 Field 5 Field 6

VARIABLES or
COLUMNS

varbl-name$$$$$$$$$$numerical-vl
X varbl-name$$$$$$$$$$numerical-vl
Z varbl-name$$$$$$$$$$ r-p-a-name
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 24 25 36 40 49 50 61

Figure 3.9: Possible data cards for VARIABLES or COLUMNS (row-wise)

The string varbl-name in data field 2 gives the name of the variable (or column)
under consideration. This name may be up to ten characters long excepting that the
name ‘SCALE’ is not allowed. If data field 1 holds the character X or Z, an array
definition is to be made. In this case, the expanded array name of the variables (or
columns) must be valid and the integer indices must have been defined in a parameter
assignment (see Section 3.2.3).

The string $$$$$$$$$$ in data field 3 is used for four purposes.
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• If the string is empty, the card is just defining the name of a problem variable.
Such a card must be inserted for all variables that only appear in nonlinear
elements.

• It may be used to announce that all the entries in the linear elements for the
variable under consideration are to be scaled. On Z cards, the numerical value
of this scale factor, the amount by which each entry is to be divided, is that
previously associated with the real parameter r-p-a-name given in field 5. On
other cards, the actual scale factor numerical-vl occupies up to 12 characters
in data field 4.

• It may be used to specify that the variable(s) mentioned in field 2 is(are) only al-
lowed to take integer values. In this case field 3 will contain the string ’INTEGER’.

• It may be used to specify that the variable(s) mentioned in field 2 is(are) only
allowed to take the values 0 or 1. In this case field 3 will contain the string
’ZERO-ONE’.

3.2.9 The GROUPS, ROWS or CONSTRAINTS Data Cards
(Group/Row-Wise)

The GROUPS, ROWS and CONSTRAINTS indicator cards are used interchangeably to an-
nounce the names of the groups which make up the objective function and, for con-
strained problems, the names of the constraints (or rows, as they are often known in
linear programming applications). In addition, the entries for the linear elements are
input here. The user may give a scaling factor for the groups or constraints. Further-
more, groups which are linear combinations of previous groups may be specified. The
syntax for the data cards which follow these indicator cards is given in Figure 3.10.

<> <—10—> <—10—> <—-12—-> <—10—> <—-12—->
F.1 Field 2 Field 3 Field 4 Field 5 Field 6

GROUPS or
ROWS or
CONSTRAINTS
N group-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
G group-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
L group-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
E group-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
XNgroup-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
XGgroup-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
XL group-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
XEgroup-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
ZN group-name$$$$$$$$$$ r-p-a-name
ZG group-name$$$$$$$$$$ r-p-a-name
ZL group-name$$$$$$$$$$ r-p-a-name
ZE group-name$$$$$$$$$$ r-p-a-name
DNgroup-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
DGgroup-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
DL group-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
DEgroup-name$$$$$$$$$$numerical-vl $$$$$$$$$$numerical-vl
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 24 25 36 40 49 50 61

Figure 3.10: Possible data cards for GROUPS, ROWS, or CONSTRAINTS(row-wise)
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The one- or two-character string in data field 1 specifies the type of group, row or
constraint to be input. Possible values for the first character and their interpretations
are exactly as in Section 3.2.6.

The string group-name in data field 2 gives the name of the group (or row or
constraint) under consideration. This name may be up to ten characters long excepting
that the name ‘SCALE’ is not allowed. For X and Z data cards, the expanded array
name must be valid and the integer indices must have been defined in a parameter
assignment (see Section 3.2.3). The kind of group (N, L, G or E) will be taken to be
that which is defined on the first occurrence of a data card for that group. Subsequent
contradictory information will be ignored.

The string $$$$$$$$$$ in data field 3 is used for three purposes.

• It may be used to specify that the group mentioned in field 2 has a linear element
involving the variable given in field 3. In this case, the string in field 3 must have
been defined in the VARIABLES section. If an array definition is being made, the
string in field 3 must be an array name. The numerical value of the coefficient of
the linear term corresponding to the variable must now be specified. On Z cards,
the value is that previously associated with the real parameter r-p-a-name given
in field 5. On other cards, the actual numerical value numerical-vl may occupy
up to 12 characters in data field 4.

• It may be used to announce that all the entries (if any) in the linear element for
the group under consideration are to be scaled; in this case field 3 will contain
the string ‘SCALE’. The numerical value of the scale factor, that is the factor by
which the group is to be divided, is now specified exactly as above.

In these first two cases, fields 5 and 6 may be used to define further coefficients
or a scale factor for non Z cards.

• If the first character in field 1 is a D, the current group is to be formed as a linear
combination of the groups mentioned in fields 3 and 5; the multiplication factors
are then recorded in fields 4 and 6 respectively. Thus we will have

group in field 2 = group in field 3 ∗ field 4 + group in field 5 ∗ field 6.

In this case, the names of the groups in fields 3 and 5 must have already been
defined. The multiplication factors may occupy up to 12 locations in fields 4 and
6.

3.2.10 The CONSTANTS, RHS or RHS’ Data Cards

The CONSTANTS, RHS or RHS’ indicator cards are used interchangeably to announce
the definition of a vector of the constant terms bi (in the constrained case, the right-
hand-sides) for each linear element. The syntax for data following this indicator card
is given in Figure 3.11.

The string rhs--name in data field 2 gives the name of the vector of group constants/
right-hand-sides. This name may be up to ten characters long. More than one vector
of group constants may be defined.

The strings $$$$$$$$$$ is used for two purposes.

• It may be used to assign a default value to all the constants in a particular vector.
In this case field 3 will contain the string ’DEFAULT’.
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<><—10—> <—10—> <—-12—-> <—10—> <—-12—->
F.1 Field 2 Field 3 Field 4 Field 5 Field 6

CONSTANTS or
RHS or
RHS’

rhs–name $$$$$$$$$$numerical-vl group-namenumerical-vl
X rhs–name $$$$$$$$$$numerical-vl group-namenumerical-vl
Z rhs–name $$$$$$$$$$ r-p-a-name
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 24 25 36 40 49 50 61

Figure 3.11: Possible data cards for CONSTANTS, RHS or RHS’

• It may contain the name of a group/row/constraint for which the constant
term/right-hand-side is to be specified. Such a string must have been defined
in the GROUPS section.

The string numerical-vl in data field 4 and (optionally) 6 now contains the nu-
merical value of the constant/right-hand-side and may occupy up to 12 locations.

Constants for an array of groups may also be defined on cards in which field 1
contains the character X or Z. On such cards, the expanded array name in field 3 and
(as an option on X cards) 5 must be valid and the integer indices must have been defined
in a parameter assignment (see Section 3.2.3). On Z cards, the numerical value of the
constant/right-hand-side is that previously associated with the real parameter array,
r-p-a-name, given in field 5. On X cards, the actual numerical value numerical-vl

may occupy up to 12 characters in data fields 4 and (optionally) 6.
Any constants not specified take a default value. The default value for the compo-

nents of each vector is initially zero. This default may be changed using a card whose
third field contains the string ’DEFAULT’ as mentioned above. On such a card, the
default value for the vector in field 2 is given in field 4 whenever field 1 is blank or
contains the character X. If field 1 contains the character Z, the default value is that
associated with the real parameter, rl--p-name, named in field 5. The default value
applies to each constant not explicitly specified; if the default is to be changed, the
change must be made on the first card naming a particular vector of constants.

3.2.11 The RANGES Data Cards

The RANGES indicator card is used to announce the definition of a vector of additional
bounds on the artificial variables introduced in the GROUPS section (in the constrained
case, this corresponds to saying that specified inequality constraints/rows have both
lower and upper bounds). The syntax for data following this indicator card is given in
Figure 3.12.

The string range-name in data field 2 gives the name of the vector of range values.
This name may be up to ten characters long. More than one vector of range values
may be defined.

The string $$$$$$$$$$ is used for two purposes.

• It may be used to assign a default value to all the range values in a particular
vector. In this case field 3 will contain the string ’DEFAULT’.

• It may contain the name of a group/row/constraint for which the range value is
to be specified. Such a string must have been defined in the GROUPS section.
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<> <—10—> <—10—> <—-12—-> <—10—> <—-12—->
F.1 Field 2 Field 3 Field 4 Field 5 Field 6
RANGES

range-name$$$$$$$$$$numerical-vl group-namenumerical-vl
X range-name$$$$$$$$$$numerical-vl group-namenumerical-vl
Z range-name$$$$$$$$$$ r-p-a-name
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 24 25 36 40 49 50 61

Figure 3.12: Possible data cards for RANGES

In addition, the (optional) string group-name in data field 5 may also define the
name of a group/row/constraint for which the range value is to be specified.

The string numerical-vl in data field 4 and (optionally) 6 now contains the nu-
merical value of the relevant range value and may occupy up to 12 locations. Only
groups initially specified with a G or L in columns 1 or 2 of field 1 in the GROUPS section
use range values and therefore only these groups may be specified.

Range values for an array of groups may also be defined on cards on which field 1
is the character X or Z. On such cards, the expanded array name in field 3 and (as
an option on X cards) 5 must be valid and the integer indices must have been defined
in a parameter assignment (see Section 3.2.3). On Z cards, the range value is that
previously associated with the real parameter, r-p-a-name, given in field 5. On X

cards, the actual numerical value numerical-vl may occupy up to 12 characters in
data fields 4 and (optionally) 6. Using the terminology of Section 3.2.6, the extra
bound is taken to imply the inequality 0 ≤ yk ≤ |field 4 or 6| on the artificial variable
yk.

Any component in a range vector not specified takes a default value. The default
value for the components of each vector is initially infinite. This default may be changed
using a card whose third field contains the string ’DEFAULT’ as mentioned above. On
such a card, the default value for the vector in field 2 is given in field 4 whenever field 1
is blank or contains the character X. If field 1 contains the character Z, the default
value is that associated with the real parameter, rl--p-name, named in field 5. The
default value applies to each range value not explicitly specified. If the default is to
be changed, the change must be made on the first card naming a particular vector of
range values.

3.2.12 The BOUNDS Data Cards

The BOUNDS indicator card is used to announce a vector of data giving lower and upper
bounds on the unknown variables. The syntax for data following this indicator card is
given in Figure 3.13.

The two-character string in data field 1 specifies the type of bound to be input.
Possible values are: LO, XL or ZL, in the case of a lower bound, UP, XU, ZU,in the case
of an upper bound, FX, XX, ZX,in the case of a fixed variable, i.e., the lower and upper
bounds are equal, FR or XR if the variable is free, i.e., the lower and upper bounds
are infinite, MI or XM, if there is no lower bound, and PL or XP, if there is no upper
bound. The string bound-name in data field 2 gives the name of the bound vector
under consideration. This name may be up to ten characters long. Several different
bound vectors may be defined in the BOUNDS section.

The string $$$$$$$$$$ is used for two purposes.

• It may contain the name of a variable/column for which a bound is to be specified.
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<> <—10—> <—10—> <—-12—-> <—10—><—-12—->
F.1 Field 2 Field 3 Field 4 Field 5
BOUNDS
LO bound-name$$$$$$$$$$numerical-vl
UP bound-name$$$$$$$$$$numerical-vl
FX bound-name$$$$$$$$$$numerical-vl
FR bound-name$$$$$$$$$$
MI bound-name$$$$$$$$$$
PL bound-name$$$$$$$$$$
XL bound-name$$$$$$$$$$numerical-vl
XU bound-name$$$$$$$$$$numerical-vl
XX bound-name$$$$$$$$$$numerical-vl
XR bound-name$$$$$$$$$$
XMbound-name$$$$$$$$$$
XP bound-name$$$$$$$$$$
ZL bound-name$$$$$$$$$$ r-p-a-name
ZU bound-name$$$$$$$$$$ r-p-a-name
ZX bound-name$$$$$$$$$$ r-p-a-name
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 24 25 36 40 49

Figure 3.13: Possible data cards for BOUNDS

This name may be up to ten characters long and must refer to a variable defined
in the VARIABLE data.

If the card is of type LO, UP, FX, FR, MI, or PL, the string in data field 3 specifies
to which variable the bound is applied. If the card is of type XL, ZL, XU, ZU,
XX, ZX, XR, XM or XP, this string specifies an array of variables which are to be
bounded. On such cards, the expanded array name of this string must be valid
and the integer indices must have been defined in a parameter assignment (see
Section 3.2.3).

For bounds of type LO, UP, FX, XL, XU or XX, the numerical value of the bound or
array of bounds is given as the string numerical-vl, using at most 12 characters,
in data field 4. For bounds of type ZL, ZU or ZX, the numerical value of the array
of bounds is that previously associated with the real parameter array r-p-a-name

specified in field 5. When both lower and upper bounds on a variable are required,
they must be specified on separate cards. Possible combinations are LO–UP, LO–
PL, MI–UP, XL–XU, XL–XP, XM–XU, ZL–XU, XL–ZU, ZL–ZU, ZL–XP and XM–ZU.

• It may be used to assign a default value to all the lower and/or upper bounds
in a particular vector. In this case field 3 will contain the string ’DEFAULT’.
Each bound vector is given default lower and upper bounds on every variable.
The value of the default lower bound is initially zero and the upper bound is
initially infinite. These default values may be changed. A new default value for
the vector in field 2 is then given in field 4 whenever field 1 is LO, UP, FX, FR, MI,
PL or starts with the character X. If field 1 starts with the character Z, the default
value is that associated with the real parameter, rl--p-name, named in field 5.
The appropriate default value applies to each bound not explicitly specified. If
the default is to be changed, the change must be made on the first card naming
a particular vector of bounds.

If default lower and upper bounds of zero and infinity, respectively, are in effect
and a card with MI or XM in field 1 is encountered, the relevant lower bound is
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changed to minus infinity and the upper bound becomes zero. If the same defaults
are in effect and an upper bound of zero is specified on a UP, XU or ZU card, the
relevant lower bound becomes minus infinity. These two features are necessary
for MPS compatibility.

3.2.13 The START POINT Data Cards

The START POINT indicator card is used to announce a vector of initial estimates of
the values of the unknown variables and, in the case of problems with general con-
straints, Lagrange multipliers. The Lagrangian function associated with (2.1)–(2.4) is
the function

l(x, λ) =
∑

i∈I0

gi





∑

j∈Ji

wi,jfj(xj) + aT
i x− bi





+
∑

i∈IE∪II

λigi





∑

j∈Ji

wi,jfj(xj) + aT
i x− bi





where the scalars λi are known as Lagrange multipliers. Good estimates of these
parameters can sometimes be useful for optimization procedures (see, for example,
[10]). The syntax for data following this indicator card is given in Figure 3.14.

<><—10—> <—10—> <—-12—-> <—10—> <—-12—->
F.1 Field 2 Field 3 Field 4 Field 5 Field 6
START POINT
V start-name$$$$$$$$$$numerical-vl varbl-name numerical-vl
XV start-name$$$$$$$$$$numerical-vl varbl-name numerical-vl
ZV start-name$$$$$$$$$$ rl–p-name
M start-name$$$$$$$$$$numerical-vl multp-namenumerical-vl
XMstart-name$$$$$$$$$$numerical-vl multp-namenumerical-vl
ZMstart-name$$$$$$$$$$ rl–p-name

start-name$$$$$$$$$$numerical-vl varbl-name numerical-vl
start-name$$$$$$$$$$numerical-vl multp-namenumerical-vl

X start-name$$$$$$$$$$numerical-vl varbl-name numerical-vl
X start-name$$$$$$$$$$numerical-vl multp-namenumerical-vl
Z start-name$$$$$$$$$$ rl–p-name
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 24 25 36 40 49 50 61

Figure 3.14: Possible data cards for START POINT

The V, XV and ZV cards are used to define the starting value for variables. In any of
these cards, the string start-name in data field 2 gives the name of a starting vector
and may be up to ten characters long. Several different starting vectors may be defined
in the START POINT section. The string $$$$$$$$$$ in field 3 is used for two purposes.

• It must contain the name of a variable defined in the VARIABLES section, when
a starting value is to be assigned to that variable. If field 1 does not contain ZV,
the optional string varbl-name in data field 5 may also contain the name of such
a variable whose starting value is to be assigned.

• It may be used to assign a default value to all the starting values for variables in
a particular vector. In this case field 3 must contain the string ’DEFAULT’.
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Each starting point vector is given a default value for every variable. This value
is initially zero, but it may be changed. The appropriate default value applies to
each variable not explicitly specified.

The M, XM and ZM cards are used to define the starting value for Lagrange multipliers.
In any of those cards, the string start-name in data field 2 gives the name of a starting
vector and may be up to ten characters long. Several different starting vectors may be
defined in the START POINT section. The string $$$$$$$$$$ in field 3 is used for two
purposes.

• It must contain the name of a group defined in the GROUPS section which is
not an objective function group, when a starting value is to be assigned to the
corresponding Lagrange multiplier. If field 1 does not contain ZV, the optional
string multp-name in data field 5 may also contain the name of such a multiplier
whose starting value is to be assigned.

• It may be used to assign a default value to all the starting values for Lagrange
multipliers in a particular vector. In this case field 3 must contain the string
’DEFAULT’.

Each starting point vector is given a default value for every Lagrange multiplier.
This value is initially zero, but it may be changed. The appropriate default value
applies to each multiplier not explicitly specified.

The effect of a card whose field 1 is blank or contains X or Z is similar to that of V,
XV, ZV, M, XM and ZM cards, except that

• variables and Lagrange multipliers may be mixed up on cards whose field 3 does
not contain ‘DEFAULT’,

• default values are assigned to both variables and Lagrange multipliers on card
whose field 3 contains ‘DEFAULT’. The default value for both variables and mul-
tipliers is initially zero.

If the defaults are to be changed, the change must be made on the first card naming
a particular starting point vector.

Starting values for an array of variables or Lagrange multipliers may only be defined
on cards whose field 1 begins with the character X or Z; on X cards two arrays may
be defined on a single card. On such cards, the expanded array name in field 3 (and
field 5 for X cards) must be valid and the integer indices must have been defined in a
parameter assignment (see Section 3.2.3).

It remains to specify the numerical value of the default or individual starting point
as appropriate. On cards whose field 1 starts with Z, the value is that previously
associated with the real parameter rl--p-name or array of real parameters rl--p-name
(respectively) given in field 5. On other cards, the numerical value is (or values are)
specified using up to twelve characters in the string(s) numerical-vl in data field 4
(and if required field 6).

New
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3.2.14 The QUADRATIC, HESSIAN, QUADS, QUADOBJ or QSECTION Data Cards

The QUADRACTIC, HESSIAN, QUADS1, QUADOBJ2 and QSECTION3 indicator cards are used
interchangeably to announce any nonzero coefficients hj,k in the quadratic objective
group 1

2

∑n

j=1

∑n

k=1
hj,kxjxk . Only one of each pair (hj,k, hk,j), (j 6= k), of “off-

diagonal” terms should be given, but which is unimportant. Any repeated coefficients
will be summed. The syntax for data following these indicator cards is given in Fig-
ure 3.15.

<><—10—> <—10—><—-12—-> <—10—> <—-12—->
F.1 Field 2 Field 3 Field 4 Field 5 Field 6

QUADRATIC or
HESSIAN or
QUADS or
QUADOBJ or
QSECTION

varbl-namevarbl-namenumerical-vl varbl-namenumerical-vl
X varbl-namevarbl-namenumerical-vl varbl-namenumerical-vl
Z varbl-namevarbl-name r-p-a-name
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 24 25 36 40 49 50 61

Figure 3.15: Possible data cards for HESSIAN, QUADS, QUADOBJ or QSECTION

The strings varbl-name in data fields 2 and 3 (and optionally 2 and 5 for those
cards whose field 1 does not contain Z) give the names of pairs of problem variables xj

and xk for which hj,k is nonzero. All problem variables must have been previously set
in the VARIABLES/COLUMNS section. Additionally, on a Z card, the name of the variable
must be an element of an array of variables, with a valid name and index, while on a
V card, the name may be either a scalar or an array name.

On cards whose field 1 is either empty or contains the character X, the strings
numerical-vl in data fields 4 and (optionally) 6 contain the associated numerical
values of the coefficients hj,k. On cards for which field 1 contains the character Z, the
string r-p-a-name in data field 5 gives a real parameter array name. This name must
have been previously defined and its associated value then gives the numerical value of
the parameter.

3.2.15 The ELEMENT TYPE Data Cards

The ELEMENT TYPE indicator card is used to announce the data for the different types
of nonlinear elements to be used. The names of the elemental and, optionally, internal
variables and parameters for each element type are specified in this section. The syntax
for data cards following the indicator card is given in Figure 3.16.

The string in field 1 may be one of EV, IV or EP. This indicates whether the names
of elemental variables (EV), internal variables (IV) or elemental parameters (EP) are
to be specified on the given data card. If no cards with the string IV in field 1 are
found for a particular element type, the element is assumed to have no useful internal
variables; the internal variables are then allocated the same names as the elemental

1This indicator card is included for compatibility with the proposed MPS format extension of
Ponceleón [16].

2This indicator card was given by Maros and Meszaros [14], for their compatible proposed MPS
extension.

3This indicator card is included for compatibility with the OSL [12] extensions to the MPS format.
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<> <—10—> <–6-> <–6->
F.1 Field 2 Field 3 Field 5
ELEMENT TYPE
EV etype-nameev-nam ev-nam
IV etype-nameiv-nam iv-nam
EP etype-nameep-nam ep-nam
↑↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 20 40 45

Figure 3.16: Possible data cards for ELEMENT TYPE

ones. Likewise, if no cards with the string EP in field 1 are found for a particular
element type, the element is assumed not to depend on parameter values.

The string etype-name in data field 2 gives the name of the element type under
consideration. This name may be up to ten characters long. The data for a particular
element must be specified on consecutive data cards.

The strings in data fields 3 and (optionally) 5 give the names of elemental variables
(field 1 = EV), internal variables (field 1 = IV) or parameters (field 1 = EP) for the
element type specified in field 2. These strings must be valid Fortran names (see
Section 3.1.2). The names of the variables for different element types may be the
same; the names of the elemental variables, internal variables and parameters (if the
latter two are given) for a specific element type must all be different.

3.2.16 The ELEMENT USES Data Cards

The ELEMENT USES indicator card is used to specify the names and types of the nonlin-
ear element functions. The element types may be selected from among those defined in
the ELEMENT TYPE section. Associations are made between the problem variables and
the elemental variables for the elements used and parameter values are assigned. The
syntax for data following this indicator card is given in Figure 3.17.

<> <—10—> <–6-> <—-12—-> <–6-> <—-12—->
F.1 Field 2 Field 3 Field 4 Field 5 Field 6
ELEMENT USES
T $$$$$$$$$$etype-nam
XT$$$$$$$$$$etype-nam
V elmnt-nameev-nam varbl-name
ZV elmnt-nameev-nam varbl-name
P elmnt-nameep-nam numerical-vlep-nam numerical-vl
XPelmnt-nameep-nam numerical-vlep-nam numerical-vl
ZP elmnt-nameep-nam r-p-a-nam
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 20 2425 36 40 45 49 50 61

Figure 3.17: Possible data cards for ELEMENT USES

There are three sorts of data cards in the ELEMENT USES section. For cards of the
second and third kinds, the string elmnt-name in data field 2 gives the name, or an
array of names, of a nonlinear element function. This name may be up to ten characters
long and each nonlinear element name must be unique. On array cards (those prefixed
by X or Z), the expanded element array name in field 2 must be valid and the integer
indices must have been defined in a parameter assignment (see Section 3.2.3).

The first kind of cards, identified by the characters T or XT in field 1, give the name,
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or an array of names, of an element and its type. On such cards, the string $$$$$$$$$$

in field 2 is used for two purposes.

• It may contain the name, or an array of names, of a nonlinear element function
whose type is to be defined. This name may be up to ten characters long and
each nonlinear element name must be unique. On XT cards the expanded element
array name in field 2 must be valid and the integer indices must have been defined
in a parameter assignment (see Section 3.2.3).

• It may be used to assign a default type to all the nonlinear element functions. In
this case field 2 must contain the string ‘DEFAULT’. Any element not explicitly
typed is assumed to belong to a default type. If a default is to be used, it must
be specified on a card and such a card may only appear before the first T or XT
card in the ELEMENT USES section. The string etype-name in data field 3 gives
the name of the element type to be used. This name may be up to ten characters
long and must have appeared in the ELEMENT TYPE section.

The second kind of data card, identified by the characters V or ZV in field 1, is
used to assign problem variables to the elemental variables appropriate for the element
type. On this data card, the string ev-nam in data field 3 gives the name of one of
the elemental variables for the given element type. This name must have been set in
the ELEMENT TYPE section and be a valid Fortran name (see Section 3.1.2). The string
varbl-name in data field 5 then gives the name of the problem variable that is to be
assigned to the specified elemental variable. The name of this variable may have been
set in the VARIABLES/COLUMNS section or may be a new variable (often known as a
nonlinear variable) introduced here and can be up to ten characters long. On a ZV

card, the name of the variable must be an element of an array of variables, with a valid
name and index.

The last kind of data card, identified by the characters P, XP or ZP in field 1, is used
to assign numerical values to the parameters for the element functions (P) or array
of element functions (XP and ZP). On this data card, the string ep-nam in data field
3 (and, for P and XP cards, optionally 5) must give the name of a parameter. This
name must have been set in the ELEMENT TYPE section and be a valid Fortran name,
see Section 3.1.2. On P and XP cards, the strings numerical-vl in data fields 4 and
(optionally) 6 contain the numerical value of the parameter. These values may each
occupy up to 12 locations within their field. On ZP cards, the string r-p-a-name in
data field 5 gives a real parameter array name. This name must have been previously
defined and its associated value then gives the numerical value of the parameter.

3.2.17 The GROUP TYPE Data Cards

The GROUP TYPE indicator card is used to announce the data for the different types
of nontrivial groups which are to be used. The names of the group-type variable and,
optionally, of group parameters for each group type are specified in this section. The
syntax for data cards following the indicator card is given in Figure 3.2.17.

The string in field 1 may be either GV or GP. This indicates whether the name of
a group-type variable (GV) or one or more group parameters (GP) are to be specified
on the given data card. The data for a particular group type must be specified on
consecutive data cards. The string gtype-name in data field 2 gives the name of a
nontrivial group type and may be up to ten characters long. If data field 1 holds GV,
the string gv-nam in data field 3 then gives the name of the group-type variable for this
group type. This string may be up to 6 characters long. This string must be a valid
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<> <—10—> <–6-> <–6->
F.1 Field 2 Field 3 Field 5
GROUP TYPE
GVgtype-namegv-nam
GPgtype-namegp-nam gp-nam
↑↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 20 40 45

Figure 3.18: Possible data cards for GROUP TYPE

Fortran name (see Section 3.1.2). The names of the variables for different group types
may be the same. Alternatively, if data field 1 holds GP, the strings gp-nam in data
fields 3 and (optionally) 5 give the names of parameters for the group type. These
strings must again be valid Fortran names. The names of parameters for different
group types may be the same; the names of the group-type variable and parameters (if
the latter appear) for a specific group type must all be different.

3.2.18 The GROUP USES Data Cards

The GROUP USES indicator card is used to announce which of the nonlinear elements
appear in each group and the type of group function involved. The group types may
be selected from among those defined in the GROUP TYPE section of the data while the
elements may be selected from among the types defined in the ELEMENT USES section.
In addition, group parameter values are assigned. The syntax for data following this
indicator card is given in Figure 3.19.

<> <—10—> <–6-> <—-12—-> <–6-> <—-12—->
F.1 Field 2 Field 3 Field 4 Field 5 Field 6
GROUP USES
T group-namegtype-nam
XTgroup-namegtype-nam
E group-nameelmnt-namblank/num-vlelmnt-nameblank/num-vl
XEgroup-nameelmnt-namblank/num-vlelmnt-nameblank/num-vl
ZE group-nameelmnt-nam r-p-a-name
P group-namegp-nam numerical-vl gp-nam numerical-vl
XPgroup-namegp-nam numerical-vl gp-nam numerical-vl
ZP group-namegp-nam r-p-a-name
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 20 24 25 36 40 45 49 50 61

Figure 3.19: Possible data cards for GROUP USES

There are three sorts of data cards in the GROUP USES section. For cards of the
second and third kinds, the string group-name in data field 2 gives the name, or
an array of names, of the group(s) (or row(s) or constraint(s)) under consideration.
The name may be up to ten characters long and must have been defined in the
GROUPS/ROWS/CONSTRAINTS section.

On array cards (those prefixed by X or Z), the expanded element array name in
field 2 must be valid and the integer indices must have been defined in a parameter
assignment (see Section 3.2.3).

The first kind of cards, identified by the characters T or XT in field 1, give the name,
or an array of names, of a group function and its type. On such cards, the string
$$$$$$$$$$ in field 2 is used for two purposes.
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• It may contain the name, or an array of names, of a group function whose type is
to be defined. The name may be up to ten characters long and must have been
defined in the GROUPS/ROWS/CONSTRAINTS section. On XT cards the expanded
element array name in field 2 must be valid and the integer indices must have
been defined in a parameter assignment (see Section 3.2.3).

• It may be used to assign a default type to all the group functions. In this case
field 2 must contain the string ‘DEFAULT’. Such a card may only appear before
the first T or XT card in the GROUP USES section. Any group not explicitly typed
is assumed to belong to a default type. The initial default type is trivial but the
default may be changed. The string gtype-name in data field 3 gives the name
of the group type to be used. This name may be up to ten characters long and
must have appeared in the GROUP TYPE section.

The second kind of data card, identified by the characters E, XE or ZE in field 1, is
an indication that particular nonlinear elements a re to be included in a given group.
Optionally the given elements may be multiplied by specified weights. On these data
cards, the string elmnt-name in data fields 3 (and optionally 5 on E and XE cards) hold
the names of nonlinear elements to be used. The names in both fields may be up to
ten characters long and must have been defined in the ELEMENT USES section. On XE

and ZE cards, the names of the nonlinear elements must be components of an array
of nonlinear elements, with a valid name and index. The elements are multiplied by
given weights. By default, each weight takes the value 1.0. Only non-unit weights need
to be specified explicitly. On E and XE cards, the weights are assigned the numerical
values specified in data fields 4 (and optionally 6). These values may occupy up to 12
locations of their specified field. The default value of 1.0 is taken whenever these fields
are empty. On ZE cards, the string r-p-a-name in data field 5 gives a real parameter
array name. This name must have been previously defined and its associated value
then gives the numerical value of the weight. Any group that is not named on an E or
XE card is taken to have no nonlinear elements.

The last kind of data card, identified by the characters P, XP or ZP in field 1, is used
to assign numerical values to the parameters for the group functions (P) or array of
group functions (XP and ZP). On this data card, the strings gp-nam in data fields 3 (and,
for P and XP cards, optionally 5) give the names of parameters. These names must have
been set in the GROUP TYPE section and be valid Fortran name, see Section 3.1.2. On P

and XP cards, the strings numerical-vl in data fields 4 and (optionally) 6 contain the
numerical value of the parameter. These values may each occupy up to 12 locations of
their field. On ZP cards, the string r-p-a-name in data field 5 gives a real parameter
array name. This name must have been previously defined and its associated value
then gives the numerical value of the parameter.

The T or XT card for a particular group must appear before its E, XE, ZE, P, XP or
ZP cards.

3.2.19 The OBJECT BOUND Data Cards

The OBJECT BOUND indicator card is used to announce known lower and upper bounds
on the value of the objective function for the problem. The syntax for data following
this indicator card is given in Figure 3.20.

The two-character string in data field 1 specifies the type of bound to be input.
Possible values are: LO, XL or ZL for a lower bound, and UP, XU or ZU for an upper
bound. The string obbnd-name in data field 2 gives a name to the bounds under
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<> <—10—> <—-12—-> <—10—>
F.1 Field 2 Field 4 Field 5
OBJECT BOUND
LOobbnd-name numerical-vl
UPobbnd-name numerical-vl
XL obbnd-name numerical-vl
XUobbnd-name numerical-vl
ZL obbnd-name rl–p-name
ZU obbnd-name rl–p-name
↑↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 25 36 40 49

Figure 3.20: Possible data cards for OBJECT BOUND

consideration. This name may be up to ten characters long. Several different known
bounds on the objective function may be defined in the OBJECT BOUND section.

For bounds of type LO or UP, the numerical value of the bound is given as the string
numerical-vl using at most 12 characters in data field 4. For bounds of type ZL or ZU,
the numerical value of the bound is that previously associated with the real parameter
array r-p-a-name specified in field 5. When both lower and upper bounds on the
objective are known, they must be specified on separate cards.

The objective function is assumed by default to be unbounded both below and
above. The values for each named bound set may only be changed on a LO, UP, XL, XU,
ZL or ZU card.

3.3 Another Example

In Section 2.3, we gave an example. An SDIF file for this example is given in Fig-
ure 3.21. The problem is given the name DOC. The groups are referred to as GROUP1/2/3
and the variables are X1/2/3. The vector of bounds is called BN1 and the two types of
nonlinear element are ELEMENT1/2. The elemental variables are assigned names begin-
ning with U and the internal variables for the second nonlinear element start with V.
The two group types are GTYPE1/2. Finally the nonlinear element in GROUP2 is given
the name G2E1, while those in GROUP3 are G3E1/2.

3.4 A Further Example

In Section 2.4, we gave a second example. Because of its repetitious structure, this
example is well suited to use array names and do-loops. An SDIF file for this example
is given in Figure 3.22. The problem is given the name DOC2. The variables are referred
to as X1,. . . , X1000 and the groups are G1, . . . , G1000. The vector of bounds is called
BND, the constants are CONST and the single nonlinear element type is SQUARE, with
elemental variable V. Note that the BND section is necessary since the variables are
unrestricted and we must override the default lower bounds of zero and upper bounds
of infinity. The nonlinear elements are given the names E1,. . . , E1000. Finally, the
single group type is SINE with group-type variable ALPHA and parameter P.
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<> <—10—> <—10—><—-12—-> <—10—><—-12—->
F.1 Field 2 Field 3 Field 4 Field 5 Field 6

NAME DOC
GROUPS
E GROUP1
E GROUP2
E GROUP3
VARIABLES

X1 GROUP1 1.0
X2 GROUP3 1.0
X3

BOUNDS
FR BN1 X1
LOBN1 X2 -1.0D+0
LOBN1 X3 1.0D+0
UPBN1 X2 1.0D+0
UPBN1 X3 2.0D+0
ELEMENT TYPE
EVETYPE1 V1
EVETYPE1 V2
EVETYPE2 V1
EVETYPE2 V2
EVETYPE2 V3
IV ETYPE2 U1
IV ETYPE2 U2
ELEMENT USES
T G2E1 ETYPE1
V G2E1 V1 X2
V G2E1 V2 X3
T G3E1 ETYPE2
V G3E1 V1 X2
V G3E1 V2 X1
V G3E1 V3 X3
T G3E2 ETYPE1
V G3E2 V1 X1
V G3E2 V2 X3
GROUP TYPE
GVGTYPE1 ALPHA
GVGTYPE2 ALPHA
GROUP USES
T GROUP1 GTYPE1
T GROUP2 GTYPE2
E GROUP2 G2E1
E GROUP3 G3E1
E GROUP3 G3E2
ENDATA
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 24 25 36 40 49 50 61

Figure 3.21: SDIF file for the example of Section 2.3
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<> <—10—> <—10—> <—-12—-> <—10—><—-12—->
F.1 Field 2 Field 3 Field 4 Field 5 Field 6

NAME DOC2
IE ONE 1
IE N 1000
IA NM1 -1
VARIABLES
DOI ONE N

X X(I)
ND
GROUPS
DOI ONE NM1
XNG(I) X(ONE) 1.0
ND
XNG(N)
CONSTANTS

CONST ‘DEFAULT’1.0
X CONST G(N) 0.0
BOUNDS
FR BND ‘DEFAULT’
ELEMENT TYPE
EVSQUARE V
ELEMENT USES
DOI ONE N
XTE(I) SQUARE
ZV E(I) V X(I)
ND
GROUP TYPE
GVSINE ALPHA
GPSINE P
GROUP USES
DOI ONE NM1
XTG(I) SINE
XEG(I) E(I) E(N)
XPG(I) P 1.0
ND
E G1000 E1000
P G1000 P 0.5
ENDATA
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 14 15 24 25 36 40 49 50 61

Figure 3.22: SDIF file for the example of Section 2.4

4 The Standard Input Format for

Nonlinear Elements

In addition to the problem data described in Section 3, the user might also wish to
specify the nonlinear element functions, and their derivatives, in a systematic way. A
particular nonlinear element function is defined in terms of its problem variables and
its type; both of these quantities are specified in Section 3. Thus, the only details which
remain to be specified are the function and derivative values of the element types and
the transformations between elemental and internal variables, if any.

In this section, we present one approach to this issue. As before, data is specified
in a file. The file comprises an ordered mixture of indicator and data cards; the latter
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allow function and derivative definitions in appropriate high-level language statements.

4.1 Introduction to the Standard Element Type

Input Format

4.1.1 The Values and Derivatives Required

It is assumed that a nonlinear element type is specified in terms of internal variables
u, whose names are those given on the ELEMENT TYPE data cards in an SDIF file (if
the element has no useful internal variables, the internal and elemental variables are
the same and the internal variables will have been named after the elementals), see
Section 3.2.15. An optimization procedure is likely to require the values of the element
functions and possibly their first and second, derivatives. These derivatives need only
be given with respect to the internal variables. For if we denote the gradient and
Hessian matrix of an element function f with respect to u by

∇uf and ∇uuf

respectively, the gradient and Hessian matrices with respect to the elemental variables
are

W T∇uf and W T∇uufW,

where W is defined by (2.11).
We thus need only supply derivatives with respect to u. Formally, we must define

the function value f , possibly the gradient vector ∇uf (i.e., the vector whose i-th
component is the first partial derivative with respect to the i-th internal variable) and,
possibly, the Hessian matrix ∇uuf (i.e., the matrix whose i, j-th entry is the second
partial derivative with respect to the i-th and j-th internal variables), all evaluated at
u. We now describe how to set up the data for a given problem.

4.2 Indicator Cards

As before, the user must prepare an input file, the SEIF (Standard Element type Input
Format) file, consisting of indicator and data cards. The former contain a simple
keyword to specify the type of data that follows. Possible indicator cards are given in
Figure 4.1.

Keyword Comments Presence Described in §
ELEMENTS same as NAME mandatory 3.2.1
TEMPORARIES optional 4.4.1
GLOBALS optional 4.4.2
INDIVIDUALS optional 4.4.3
ENDATA mandatory 3.2.2

Figure 4.1: Possible indicator cards

Indicator cards must appear in the order shown. The cards TEMPORARIES, GLOBALS
and INDIVIDUALS are optional.

The data cards are of two kinds. The first are like those described in Section 3.1.
The others use four fields, fields 1, 2 and 3, as before, and field 7 which starts in column
25 and is 41 characters long. This last field is used to hold arithmetic expressions. An
arithmetic expression is as defined in the Fortran programming language standard
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(ANSI X3.9-1978). We allow the use of any of the language’s intrinsic functions in
such an expression. Continuation of an expression over at most nineteen lines is also
permitted.

4.3 An Example

Before we give the complete syntax for an SEIF file, we continue the illustrative example
that we started in Section 3.1.4 and show how to specify an input file appropriate for
the problem of Section 2.5. Once again, there are many possible ways of specifying a
particular problem; we give one in Figure 4.2. The arithmetic expressions given are
written in Fortran.

The file must always start with an ELEMENTS card, on which a name (in this case
EG3) for the example may be given (line 1), and must end with an ENDATA card (line
40).

We next need to specify the names and attributes of any auxiliary quantities and
functions that we intend to use in our high level description of the element functions.
These are needed to allow for consistency checks in the subsequent high-level language
statements and must always occur in the TEMPORARIES section of the input file. Lines 3
to 6 indicate that we shall be using temporary quantities SINV1, ZERO, ONE and TWOP1,
and the character R in the first field for these lines states that these quantities will be
associated with floating point (real) values. The character M in field 1 of Lines 7 and 8
indicates that we may use the intrinsic (machine) functions SIN and COS. These are of
course Fortran intrinsic functions appropriate for the high-level language used here.

We now specify any numerical values which are to be used in one or more element
descriptions within the GLOBALS section. On lines 10 and 11, we allocate the values 0
and 1 to the previously defined quantities ZERO and ONE. Note that such cards require
the character A in field 1 - if an assignment were to take more than 41 characters (the
width of field 7), it could be continued on subsequent lines for which the string A+ is
required in field 1.

Finally we need to make the actual definitions of the function and derivative values
for the element types and specify the transformations from elemental to internal vari-
ables if they are used. Such specifications occur in the INDIVIDUALS section from lines
12 to 39 of the example. We recall that there are four element types 3PROD, 2PROD,
SINE and SQUARE and that their attributes (names of elemental and internal variables
and parameters) have been described in the SDIF file set up in Section 3.1.4. Two of
the element types (3PROD and SQUARE ) use internal variables so we need to describe
the relevant transformation for those.

On line 13, the presence of the character T in field 1 announces that the data for the
element type 3PROD is to follow. All the data for this element must be specified before
another element type is considered. On lines 14 and 15 we describe the transformation
from elemental to internal variables that is used for 3PROD. Recall that the transforma-
tion is u1 = v1− v2 and u2 = v3. On line 14, the first of these transformations is given,
namely that U1 is to be formed by adding 1.0 times V1 to -1.0 times V2. The second
transformation is given on the following line, namely that U2 is formed by taking 1.0
times V3. Both lines are marked as defining transformations by the character R in
field 1 — continuation lines are possible for transformations involving more than two
elemental variables on lines in which the string R+ appears in the same field.

We now specify the function and derivative values of the element type u1u2 with
respect to its internal variables. On line 16, the code F in field 1 indicates that we are
setting the value of the element type to U1*U2, the Fortran expression for multiplying
U1 and U2. On lines 17 and 18, we specify the first derivatives of the element type with
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<————–41—-Field 7————–>
<> <—10—> <—10—><—-12—-> <—10—><—-12—->

line F.1 Field 2 Field 3 Field 4 Field 5 Field 6
1 ELEMENTS EG3
2 TEMPORARIES
3 R SINV1
4 R ZERO
5 R ONE
6 R TWOP1
7 M SIN
8 M COS
9 GLOBALS

10 A ZERO 0.0
11 A ONE 1.0
12 INDIVIDUALS
13 T 3PROD
14 R U1 V1 1.0 V2 -1.0
15 R U2 V3 1.0
16 F U1*U2
17 G U1 U2
18 G U2 U1
19 H U1 U1 ZERO
20 H U1 U2 ONE
21 H U2 U2 ZERO
22 T 2PROD
23 F V1*V2
24 G V1 V2
25 G V2 V1
26 H V1 V1 ZERO
27 H V1 V2 ONE
28 H V2 V2 ZERO
29 T SINE
30 A SINV1 SIN(V1)
31 F SINV1
32 G V1 COS(V1)
33 H V1 V1 -SINV1
34 T SQUARE
35 R U1 V1 1.0 V2 1.0
36 A TWO 2.0
37 F U1*U1
38 G U1 TWO*U1
39 H U1 U1 TWO
40 ENDATA
↑↑↑ ↑ ↑ ↑ ↑ ↑ ↑↑ ↑ ↑ ↑ ↑ ↑ ↑
1 2 3 5 10 14 15 20 2425 36 40 49 50 61 65

Figure 4.2: SEIF file for the example of Section 2.5
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respect to its two internal variables U1 and U2 - the character G in field 1 indicates that
gradient values are to be set. On line 17, the derivative with respect to the variable
U1, specified in field 2, is taken and expressed as U2 in field 7. Similarly, on line 18, the
derivative with respect to the variable U2 (in field 2), U1, is given in field 7. Finally,
on lines 19 to 21, the second partial derivatives with respect to both internal variables
are given. These derivatives appear on cards whose first field contains the character H.
On line 19, the second derivative with respect to the variables U1 (in field 2) and U1

(in field 3), 0.0, is given in field 7. Similarly the second derivative with respect to the
variables U1 (in field 2) and U2 (in field 3), 1.0, occurs in field 7 of line 20 and that
with respect to U2 (in field 2) and U2 (in field 3), 0.0, is given in field 7 of the following
line.

The same principle is applied to the specification of range transformations, values
and derivatives for the remaining element types. The type 2PROD does not use a trans-
formation to internal variables, so derivatives are taken with respect to the elemental
variables V1 and V2 (or one might think of the internal variables being V1 and V2,
related to the elemental variables through the identity transformation). The values
and derivatives for this element type are given on lines 22 to 28. The type SINE again
does not use special internal variables and the required value and derivatives are given
on lines 29 to 33. Note, however, that the value and its second derivative with respect
to v1 both use the quantity sin v1; for efficiency, we set the auxiliary quantity SINV1

to the Fortran value SIN(V1) on line 30 and thereafter refer to SINV1 on lines 31 and
33. Notice that this definition of auxiliary quantities occurs on a line whose first field
contains the character A. Finally, the type SQUARE, which uses a transformation from
elemental to internal variables u1 = v1 + v2, is defined on lines 34 to 39. Again notice
that the value 2.0 occurs in both first and second derivatives, so the auxiliary quantity
TWO is set on line 36 to hold this value.

4.4 Data Cards

The ELEMENTS and ENDATA indicator cards perform the same function as the cards NAME
and ENDATA in Section 3.2.1 and 3.2.2. The problem name specified in field 3 on the
ELEMENTS card must be the same as that given in the same field on the NAME card of
the SDIF file.

4.4.1 The TEMPORARIES Data Card

When specifying the function and derivative values of a nonlinear element, it often
happens that an expression occurs more than once. It is then convenient to define
an auxiliary parameter to have the value of the common expression and henceforth to
refer to the auxiliary parameter. For instance, a nonlinear element of the two internal
variables u1 and u2 might be u1e

u2 . (The names of the internal variables have already
been specified in the ELEMENT TYPE section of the SDIF and are known as reserved

parameters.) Its gradient vector (vector of first partial derivatives) has components
eu2 and u1e

u2 . If we define the auxiliary parameter w = eu2 , the derivatives are then
w and u1w.

The TEMPORARIES indicator card is used to announce the names of any auxiliary
parameters which are to be used in defining the function and derivative values of the
nonlinear elements. This list should also include the name of any intrinsic and external
functions used. The syntax for data cards following the indicator card is given in
Figure 4.3.
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<><–6->
F.1 Field 2
TEMPORARIES
I p-name
R p-name
L p-name
M p-name
F p-name
↑↑ ↑ ↑
2 3 5 10

Figure 4.3: Possible data cards for TEMPORARIES

The single-character string in field 1 specifies the type of auxiliary parameter that
is to be defined. Possible types are integer (I), real (R), logical (L), intrinsic function
(M) or external function (F). The string p-name in field 2 then gives the name of the
auxiliary parameter. The name must be a valid Fortran name, see Section 3.1.2, but
must not be a reserved one, i.e., one of the names assigned to the internal variables or
parameters for the element in question in the ELEMENT TYPE section of the SDIF (see,
Section 3.2.15). Any auxiliary parameter that is to be used must be defined in the
TEMPORARIES section along with all intrinsic and external function names.

4.4.2 The GLOBALS Data Cards

The GLOBALS indicator card is used to announce the assignment of general parameter
values. the syntax for data cards following the indicator card is given in Figure 4.4.

<><–6-> <–6-> <——————41——————->
F.1 Field 2 Field 3 Field 7
GLOBALS
A p-name &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &
A+ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &
I l-name p-name &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &
I+ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &
E l-name p-name &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &
E+ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &
↑↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 10 15 20 25 65

Figure 4.4: Possible data cards for GLOBALS

The one or two character string in field 1 specifies the type of assignment that is to
be made from the card. Possible values for the first character of the string are:

A This card announces that an auxiliary parameter is to be assigned a value. The
string p-name in field 2 gives the name of the auxiliary parameter that is to be
defined; this name must be a valid Fortran name, see Section 3.1.2, and must
have been previously defined in the TEMPORARIES section. The string in field 7 is
an arithmetic expression. The assignment

auxiliary variable named in field 2← field 7

is made, where again ← means “is given the value”; any variable mentioned in
the arithmetic expression must either be reserved (see Section 4.4.1), or have
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been defined in the TEMPORARIES section. If in this latter case, the variable is
integer or real, it must have been allocated a value itself on a previous GLOBALS
data card.

I This card announces that an auxiliary parameter is to be assigned a value whenever
a second logical auxiliary parameter has the value .TRUE. The string p-name

in field 3 gives the name of the auxiliary parameter that is to be defined; this
name must be a valid Fortran name, see Section 3.1.2, and must have been pre-
viously defined in the TEMPORARIES section. The string in field 7 is an arithmetic
expression. The assignment

auxiliary variable named in field 3← field 7

will be made if and only if the logical auxiliary parameter l-name specified in
field 2 has the value .TRUE.; the logical parameter must have been previously
defined in the TEMPORARIES section and allocated a value in the GLOBALS section.
The arithmetic expression must obey the rules set out in the A section above.

E This card announces that an auxiliary parameter is to be assigned a value whenever
a second logical auxiliary parameter has the value .FALSE. The string p-name

in field 3 gives the name of the auxiliary parameter that is to be defined; this
name must be a valid Fortran name, see Section 3.1.2, and must have been pre-
viously defined in the TEMPORARIES section. The string in field 7 is an arithmetic
expression. The assignment

auxiliary variable named in field 3← field 7

will be made if and only if the logical auxiliary parameter, l-name, specified in
field 2 has the value .FALSE.; the logical parameter must have been previously
defined in the TEMPORARIES section and allocated a value in the GLOBALS section.
The arithmetic expression must obey the rules set out in the A section above.

The data started on an A, I and E card may be continued on a card whose first field
contains an A+, I+ or E+ respectively. Such cards contain an arithmetic expression in
field 7 and no further data; the arithmetic expression must obey the rules set out in
the A section above. At most nineteen continuations of a single assignment are allowed.

The GLOBALS section is intended for the definition of auxiliary variables which occur
in more than one element type. If an auxiliary variable occurs in a single element type,
it may be defined in the INDIVIDUALS section (see Section 4.4.3).

4.4.3 The INDIVIDUALS Data Cards

The INDIVIDUALS indicator card is used to announce the definition of function and
derivative values and the transformation between elemental and internal variables for
the types of nonlinear element functions required. The syntax for data cards following
the indicator card is given in Figure 4.5.

The one- or two-character string in field 1 specifies the type of data contained on
the card. Possible values for the first character of the string are:

T This card announces that a new element type is to be considered. The string
etype-name in field 2 gives the name of the element type; the name may be up
to ten characters long and must have been defined in the ELEMENT TYPE section
of the SDIF file (see Section 3.2.15).
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<————-41—-Field 7————–>
<> <—10—> <—10—><—-12—-> <—10—><—-12—->
F.1 Field 2 Field 3 Field 4 Field 5 Field 6
INDIVIDUALS
T etype-name
R iv-nam ev-nam numerical-vl ev-nam numerical-vl
A p-name &&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&
A+ &&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&
I l-name p-name &&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&
I+ &&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&
E l-name p-name &&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&
E+ &&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&
F &&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&
F+ &&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&
G iv-nam &&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&
G+ &&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&
H iv-nam iv-nam &&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&
H+ &&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 10 14 15 20 2425 36 40 49 50 61 65

Figure 4.5: Possible data cards for INDIVIDUALS

R This card announces that information concerning the transformation between the
elemental and internal variables for the element type is to be given. Such informa-
tion is appropriate only for element types which have been defined with internal
variables in the ELEMENT TYPE section of the SDIF file (see Section 3.2.15). The
transformation is specified by the matrix W of Section 2.2; only nonzero coeffi-
cients of W need be specified here.

The string inv-name in field 2 contains the name of an internal variable (i.e., row
of W ). The name must be a valid Fortran name, see Section 3.1.2, and have been
defined on an IV data line in the ELEMENT TYPE section of the SDIF file. The
strings iv-nam in fields 3 and (optionally) 5 then give the names of elemental
variables (i.e., columns of W ). The names must be valid Fortran names and
have been defined on EV data lines in the ELEMENT TYPE section of the SDIF
file. The strings in fields 4 and (optionally) 6 contain the numerical values of
the coefficients of W corresponding to the row given in field 2 and the columns
given in fields 3 and 5 respectively. These numerical values may each be up to
12 characters long. The entries of W may be defined in any order.

As an example, the transformation (2.9) could be entered with three R data cards.
On the first, field 2 would hold the name given to the internal variable u1; field 3
would hold the name given to the elemental variable v1 and field 4 would contain
1.0. Similarly field 5 would hold the name given to the elemental variable v2 and
field 6 would also contain 1.0. On the second, field 2 would also hold the name
given to the internal variable u1; field 3 would now hold the name given to the
elemental variable v3 and field 4 would contain -2.0. On the third card, field 2
would hold the name given to the internal variable u2; field 3 would hold the
name given to the elemental variable v1 and field 4 would contain 1.0. Field 5
would now hold the name given to the elemental variable v3 and field 6 would
contain -1.0.

A This card announces that an auxiliary parameter, specific to the current element
type, is to be assigned a value. The string p-name in field 2 gives the name of
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the auxiliary parameter that is to be defined; this name must be a valid Fortran
name, see Section 3.1.2, and have been previously defined in the TEMPORARIES

section. The string in field 7 is an arithmetic expression. The assignment

auxiliary variable named in field 2← field 7

is made, where again ← means “is given the value”; any variable mentioned in
the arithmetic expression must either be reserved (see Section 4.4.1), or have
been defined in the TEMPORARIES section. If in this latter case, the variable is
integer or real, it must have been allocated a value itself either on a previous
GLOBALS data card or on a previous A, E or I card for the current element type
in the ELEMENTS section.

I This card announces that an auxiliary parameter, specific to the current element
type, is to be assigned a value whenever a second logical auxiliary parameter has
the value .TRUE. The string, p-name, in field 3 gives the name of the auxiliary
parameter that is to be defined; this name must be a valid Fortran name, see
Section 3.1.2, and have been previously defined in the TEMPORARIES section. The
string in field 7 is an arithmetic expression. The assignment

auxiliary variable named in field 3← field 7

will be made if and only if the logical auxiliary parameter, l-name, specified in
field 2 has the value .TRUE.; the logical parameter must have been previously
defined in the TEMPORARIES section and allocated a value in the GLOBALS or
INDIVIDUALS section. The arithmetic expression must obey the rules set out in
the A section above.

E This card announces that an auxiliary parameter, specific to the current element
type, is to be assigned a value whenever a second logical auxiliary parameter has
the value .FALSE. The string, p-name, in field 3 gives the name of the auxiliary
parameter that is to be defined; this name must be a valid Fortran name, see
Section 3.1.2, and have been previously defined in the TEMPORARIES section. The
string in field 7 is an arithmetic expression. The assignment

auxiliary variable named in field 3← field 7

will be made if and only if the logical auxiliary parameter, l-name, specified in
field 2 has the value .FALSE.; the logical parameter must have been previously
defined in the TEMPORARIES section and allocated a value in the GLOBALS or
INDIVIDUALS section. The arithmetic expression must obey the rules set out in
the A section above.

F This card specifies the value of the nonlinear element. The string in field 7 is an
arithmetic expression; the assignment

nonlinear element function← field 7

is made; any variable mentioned in the expression must obey the rules set out in
the A section above.

G This card specifies the value of a component of the gradient of the nonlinear element.
The string, iv-nam, in field 2 contains the name of an internal variable. The
component of the gradient specified on the card will be taken with respect to this
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variable. The string must be a valid Fortran name, see Section 3.1.2, and have
been defined on an IV data line, for a nonlinear element defined with internal
variables, or an EV data line, for an element without explicit internal variables, in
the ELEMENT TYPE section of the SDIF file. The string in field 7 is an arithmetic
expression; the assignment

derivative of element w.r.t. variable in field 2← field 7

is made; any variable mentioned in the arithmetic expression must obey the rules
set out in the A section above. G cards are optional. However, once the user starts
to form the gradient for an element type, any component not explicitly specified
will be assumed to have the value zero.

H This card specifies the value of a component of the Hessian matrix of the nonlinear
element. The strings iv-nam in fields 2 and 3 contain the names of internal
variables. The component of the Hessian specified on the card will be taken
with respect to these variables. Either string must be a valid Fortran name, see
Section 3.1.2, and have been defined on an IV data line, for a nonlinear element
defined with internal variables, or an EV data line, for an element without explicit
internal variables, in the ELEMENT TYPE section of the SDIF file. The string in
field 7 is an arithmetic expression; the assignment

second derivative of element w.r.t. variables in fields 2 and 3← field 7

is made; any variable mentioned in the arithmetic expression must obey the rules
set out in the A section above. H cards are optional. However, once the user starts
to specify the Hessian matrix for an element type, any component not specified
will be assumed to have the value zero. The matrix is assumed to be symmetric
and so the user needs only supply values for one of

∂2f

∂ui∂uj

or
∂2f

∂uj∂ui

(i 6= j)

it does not matter which. Observe that defaulting Hessian components to zero
gives a very simple way of inputing sparse matrices; however, as we stressed in the
introduction, we do not generally recommend this method of specifying invariant
subspaces.

The data started on an A, I, E, F, G and H card may be continued on a card whose
first field contains an A+, I+, E+, F+, G+ or H+ respectively. Such cards contain an
arithmetic expression in field 7 and no further data; the arithmetic expression must
obey the rules set out in the A section above. At most nineteen continuations of a
single assignment are allowed.

The data for a single element type must occur on consecutive cards and in the
order given in Figure 4.5, excepting that A, I and E cards may be intermixed. A new
element type is deemed to have started whenever a T card is encountered. The F card is
compulsory for all element types; elements with useful transformations from elemental
to internal variables must also have R cards. The data for a particular card type is
considered to have been completed whenever another card type is encountered.

4.5 Two Further Examples

In Section 2.3, we gave an example. An SEIF file for this example is given in Fig-
ure —refF3.3.1. The problem is again given the name DOC. The two types of nonlinear
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element were assigned the names ELEMENT1/2 by the previous SDIF file. The elemental
variables were given names beginning with V and the internal variables for the second
nonlinear element started with U. The constant 0.0 occurs in the derivatives of both
elements, so an auxiliary variable is assigned to hold its value (although, we could
have just not specified these particular components, which would then have taken their
default zero value). The function value and derivatives of the second element type use
both sines and cosines of u2 and again auxiliary variables are assigned to hold these
values, this time as variables local to ELEMENT2. The second derivatives are sufficiently
straightforward to compute that we provide them.

<————–41—-Field 7————>
<> <—10—> <—10—><—-12—-> <—10—><—-12—->
F.1 Field 2 Field 3 Field 4 Field 5 Field 6

ELEMENTS DOC
TEMPORARIES
R CS
R SN
R ZERO
R SIN
R COS
GLOBALS
G ZERO 0.0D0
INDIVIDUALS
T ETYPE1
F V1*V2
G V1 V2
G V2 V1
H V1 V1 ZERO
H V1 V2 1.0D0
H V2 V2 ZERO
T ETYPE2
R U1 V1 1.0D0
R U2 V2 1.0D0 V3 1.0D0
A CS COS(U2)
A SN SIN(U2)
F U1*SN
G U1 SN
G U2 U1*CS
H U1 U1 ZERO
H U1 U2 CS
H U2 U2 -U1*SN
ENDATA
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 10 14 15 20 2425 36 40 49 50 61 65

Figure 4.6: SEIF file for the element types for the exampleof Section 2.3

We gave a second example in Section 2.4. An SEIF file for this example is given in
Figure 4.7 on page 54. The problem is again given the name DOC2. The only type of
nonlinear element was assigned the name SQUARE in the previous SDIF file, its elemental
variable was called V and there was no useful range transformation.
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<————–41—-Field 7————>
<> <—10—> <—10—><—-12—-> <—10—><—-12—->
F.1 Field 2 Field 3 Field 4 Field 5 Field 6

ELEMENTS DOC2
INDIVIDUALS
T SQUARE
F V**2
G V 2.0D0*V
H V V 2.0D0
ENDATA
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 10 14 15 20 2425 36 40 49 50 61 65

Figure 4.7: SEIF file for the element types for the exampleof Section 2.4

5 The Standard Input Format for

Nontrivial Groups

In addition to the problem data and the nonlinear element types described in Section 3
and 4, the user might also wish to specify the nontrivial group functions, and their
derivatives, in a systematic way. A particular nontrivial group function is defined in
terms of its group type and variable; both of these quantities are specified in Section 3.
Thus, the only details which remain to be specified are the function and derivative
values of the group types.

Once again, we present an approach to this issue. As before, data is specified in a
file. The file comprises an ordered mixture of indicator and data cards; the latter allow
function and derivative definitions in appropriate high-level language statements.

5.1 Introduction to the Standard Group Type

Input Format

5.1.1 The Values and Derivatives Required

It is assumed that a nonlinear group type i s specified in terms of its group-type
variable as described on a GROUP TYPE data card in an SDIF file, see Section 3.2.17.
An optimization procedure is likely to require the values of the group functions and
their first and second derivatives (taken with respect to the variable). We now describe
how to set up the data for a given problem.

5.1.2 Indicator Cards

As before, the user must prepare an input file, the SGIF (Standard Group type Input
Format) file, consisting of indicator and data cards. The former contain a simple
keyword to specify the type of data that follows. Possible indicator cards are given in
Figure 5.1.

Indicator cards must appear in the order shown. The cards TEMPORARIES, GLOBALS
and INDIVIDUALS are optional.

The data cards are of a single kind, using four fields, fields 1, 2, 3 and 7, exactly as
described in Section 4.2.
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Keyword Comments Presence Described in §
GROUPS same as NAME mandatory 3.2.1
TEMPORARIES optional 4.4.1
GLOBALS optional 4.4.2
INDIVIDUALS optional 5.2.1
ENDATA mandatory 3.2.2

Figure 5.1: Possible indicator cards

5.1.3 An Example

Before we give the complete syntax for an SGIF file, we finish the illustrative example
that we started in Section 3.1.4 and Section 4.3 and show how to specify an input file
appropriate for the problem of Section 2.5. The format is fairly similar to that for
the SEIF file of Section 4. Once again, there are many possible ways of specifying a
particular problem; we give one in Figure 5.2.

<> <—10—> <—10—><——————-41——————>
line F.1 Field 2 Field 3 Field 7
1 GROUPS EG3
2 TEMPORARIES
3 R TWOP1
4 INDIVIDUALS
5 T PSQUARE
6 A TWOP1 2.0*P1
7 F P1*ALPHA*ALPHA
8 G TWOP1*ALPHA
9 H TWOP1

10 ENDATA
↑↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
1 2 3 5 10 14 15 20 24 25 65

Figure 5.2: SGIF file for the element types for the exampleof Section 2.5

The file must always start with a GROUPS card, on which a name (in this case EG3)
for the example may be given (line 1), and must end with an ENDATA card (line 10).

We next need to specify the names and attributes of any auxiliary quantities and
functions that we intend to use in our high level description of the group functions.
These are needed to allow for consistency checks in the subsequent high-level language
statements and must always occur in the TEMPORARIES section of the input file. Line 3
indicates that we shall be using temporary quantities TWOP1 and the character R in the
first field of this lines states that the quantity will be associated with a floating point
(real) value.

We now make the actual definitions of the function and derivative values for the non-
trivial group type used; we recall that there is a single nontrivial group type PSQUARE

and that its attributes (name of group-type variable and parameter) have been de-
scribed in the SDIF file set up in Section 3.1.4. This definition takes place within the
INDIVIDUALS section. The presence of the character T in field 1 of line 5 announces
that the data for the group type PSQUARE is to follow. All the data for this group
must be specified before another group type is considered. We note that the quantity
2p1 occurs in both first and second derivatives of the group type function and so the
auxiliary quantity TWOP1 is set on line 6 to hold this value. The first field of a line
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on which such an assignment is made contains the character A. The value (line 7), its
first derivative (line 8) and second derivative (line 9) with respect to the group-type
variable are now given. A Fortran expression for these values occurs in field 7 on each
of these lines; the lines contain the characters F, G and H respectively in field 1 for such
assignments.

If there had been more than a single group type with one or more expressions in
common, these expressions could have been assigned to previously attributed quantities
in a GLOBALS section. This section would then have appeared between the TEMPORARIES
and INDIVIDUALS sections.

5.2 Data Cards

The GROUPS and ENDATA indicator cards perform the same function as the cards NAME
and ENDATA in Section 3.2.1 and 3.2.2 Likewise, the TEMPORARIES and GLOBALS data
cards have exactly the same syntax as those in Section 4.4.1 and 4.4.2, excepting that
the reserved parameters are now the group-type variables specified in the GROUP TYPE

section of the SDIF file.

5.2.1 The INDIVIDUALS Data Cards

The INDIVIDUALS indicator card is used to announce the definition of function and
derivative values for the types of nontrivial group functions required. The syntax for
data cards following the indicator card is given in Figure 5.2.1.

<> <—10—> <—10—> <——————-41——————>
F.1 Field 2 Field 3 Field 7
T gtype-name
A p-name &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&
A+ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&
I l-name p-name &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&
I+ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&
E l-name p-name &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&
E+ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&
F &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&
F+ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&
G &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&
G+ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&
H &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&
H+ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 10 14 15 20 24 25 65

Figure 5.3: Possible data cards for INDIVIDUALS

The one- or two-character string in field 1 specifies the type of data contained on
the card. Possible values for the first character of the string are:

T This card announces that a new group type is to be considered. The string gtype-name
in field 2 gives the name of the group type; the name may be up to ten characters
long and must have been defined in the GROUP TYPE section of the SDIF file (see
Section 3.2.16).

A This card announces that an auxiliary parameter, specific to the current group type,
is to be assigned a value. The string p-name in field 2 gives the name of the
auxiliary parameter that is to be defined; this name must be a valid Fortran
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name, see Section 3.1.2, and have been previously defined in the TEMPORARIES

section. The string in field 7 is an arithmetic expression. The assignment

auxiliary variable named in field 2← field 7

is made; any variable mentioned in the arithmetic expression must either be
reserved (see Section 5.2), or have been defined in the TEMPORARIES section. If,
in this latter case, the variable is integer or real, it must have been allocated a
value itself either on a previous GLOBALS data card or on a previous A card for
the current element type in the INDIVIDUALS section.

I This card announces that an auxiliary parameter, specific to the current group type,
is to be assigned a value whenever a second logical auxiliary parameter has the
value .TRUE. The string, p-name, in field 3 gives the name of the auxiliary pa-
rameter that is to be defined; this name must be a valid Fortran name, see
Section 3.1.2, and have been previously defined in the TEMPORARIES section. The
string in field 7 is an arithmetic expression. The assignment

auxiliary variable named in field 3← field 7

will be made if and only if the logical auxiliary parameter, l-name, specified in
field 2 has the value .TRUE.; the logical parameter must have been previously
defined in the TEMPORARIES section and allocated a value in the GLOBALS or
INDIVIDUALS section. The arithmetic expression must obey the rules set out in
the A section above.

E This card announces that an auxiliary parameter, specific to the current group type,
is to be assigned a value whenever a second logical auxiliary parameter has the
value .FALSE. The string, p-name, in field 3 gives the name of the auxiliary
parameter that is to be defined; this name must be a valid Fortran name, see
Section 3.1.2, and have been previously defined in the TEMPORARIES section. The
string in field 7 is an arithmetic expression. The assignment

auxiliary variable named in field 3← field 7

will be made if and only if the logical auxiliary parameter, l-name, specified in
field 2 has the value .FALSE.; the logical parameter must have been previously
defined in the TEMPORARIES section and allocated a value in the GLOBALS or
INDIVIDUALS section. The arithmetic expression must obey the rules set out in
the A section above.

F This card specifies the value of the nontrivial group. The string in field 7 is an
arithmetic expression; the assignment

nontrivial group function← field 7

is made; any variable mentioned in the expression must obey the rules set out in
the A section above.

G This card specifies the value of the first derivative of the nonlinear group function
with respect to its group-type variable. The string in field 7 is an arithmetic
expression; the assignment

first derivative of group function← field 7

is made; any variable mentioned in the arithmetic expression must obey the rules
set out in the A section above.
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H This card specifies the value of the second derivative of the the nonlinear group
function with respect to its group-type variable. The string in field 7 is an
arithmetic expression; the assignment

second derivative of group function← field 7

is made; any variable mentioned in the arithmetic expression must obey the rules
set out in the A section above.

The data started on an A, I, E, F, G and H card may be continued on a card whose
first field contains an A+, I+, E+, F+, G+ or H+ respectively. Such cards contain an
arithmetic expression in field 7 and no further data; the arithmetic expression must
obey the rules set out in the A section above. At most nineteen continuations of a
single assignment are allowed.

The data for a single group type must occur on consecutive cards and in the order
given in Figure 5.3. A new group type is deemed to have started whenever a T card is
encountered. The F card is compulsory for all group types.

5.3 Two Further Examples

In Section 2.3, we gave an example. An SGIF file for this example is given in Figure 5.4.

<> <—10—> <—10—><——————-41——————>
F.1 Field 2 Field 3 Field 7

GROUPS DOC
TEMPORARIES
R ALPHA2
R TWO
INDIVIDUALS
T GTYPE1
A TWO 2.0D+0
F ALPHA*ALPHA
G TWO*ALPHA
H TWO
T GTYPE2
A ALPHA2 ALPHA*ALPHA
F ALPHA2*ALPHA2
G 4.0*ALPHA2*ALPHA
H 12.0*ALPHA2
ENDATA
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 10 14 15 20 24 25 65

Figure 5.4: SGIF file for the nontrivial group types for the exampleof Section 2.3

The problem is again given the name DOC. The two types of nontrivial groups were
assigned the names GTYPE1/2 by the previous SDIF file, each with group-type variables
ALPHA. The function and derivatives values of the second group type, g(α) = α4, all
use some product of α2, so an auxiliary variable is assigned to hold this value, the
variable being local to the group type. Likewise, the derivatives of the first group type,
g(α) = α2 both use some product of 2.0, so another auxiliary variable is assigned to
hold its value.

We gave a second example in Section 2.4. An SGIF file for this example is given in
Figure 5.5 on page 59. The problem is again given the name DOC2. The single nontrivial
group type was given the name SINE by the previous SDIF file, with the group-type
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variable ALPHA and the single parameter P. The function and second derivatives both
depend on the product of the parameter with the sine of the group type variable, so
an auxiliary variable is assigned to hold this value.

<> <—10—> <—10—><——————-41——————>
F.1 Field 2 Field 3 Field 7

GROUPS DOC2
TEMPORARIES
R ISINA
M SIN
M COS
INDIVIDUALS
T SINE
A ISINA P*SIN(ALPHA)
F ISINA
G P*COS(ALPHA)
H -ISINA
ENDATA
↑↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 5 10 14 15 20 24 25 65

Figure 5.5: SGIF file for the nontrivial group type for the exampleof Section 2.4

6 Free Form Input

So far, we have been quite specific in the format that we allow. In this section, we
consider a second format which, though closely connected to the first, allows one to
input problems in a less rigid fashion. Although we refer to this second format as free

format, the freedom really lies in how the data can be laid out in an input file, not in
any extra enhancements to the content of a file.

The input style discussed in Sections 3–5 is known as fixed format. Each SDIF/SEIF/SGIF
file is assumed to be in fixed format unless otherwise specified. A fixed format file has
data arranged in specified fields of given length and normally does not allow for much
data on a single card. A free form file, on the other hand, is one where considerable
data may be conveyed on a single line. The data does not have to lie in prespecified
fields. However, we shall insist that any free form file can be translated to fixed format

and interpreted correctly, in this format, in a single sequential pass through the file.
We allow a further pair of indicator cards in any SDIF/SEIF/SGIF file. These

cards, like those described in Section 3.1, Section 4.2 and Section 5.1.2, contain a
single keyword starting in column 1. The new keywords are given in Figure 6.1.

Keyword Presence
FREE FORMAT optional
FIXED FORMAT optional

Figure 6.1: Additional indicator cards

Any data that lies between a FREE FORMAT card and the next FIXED FORMAT or
ENDATA card is considered to be in free format. Likewise, any data that lies between a
FIXED FORMAT card and the next FREE FORMAT or ENDATA card is considered to be in
fixed format. The file is considered to be in fixed format when the NAME (SDIF file),
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ELEMENTS (SEIF file) or GROUPS (SGIF file) card is first encountered and thus no initial
FIXED FORMAT card is required.

Fixed format data is exactly as described in Sections 3–5. The data on a free format
data card consists of a number of strings separated by separators. The characters “-”,
“;”, “$” and “ ” (blank) are separators and should not therefore be used as significant
characters within strings. For example, in free format, X1;2 will be interpreted as two
strings X1 and 2. The separators have the following meanings:

(blank) indicates that the previous string has finished and that a new string will
follow. One or more blanks is interpreted as a single blank.

; indicates that the previous string has finished and that a new string will follow.
Moreover, if the file is translated into fixed format, the new string will appear on
a new card.

indicates that the previous string has finished and that the next string is empty. Each
- indicates a separate empty string so that indicates three empty strings.

$ indicates that the previous string has finished and that the remainder of the card is
to be considered as a comment (and thus ignored when the file is interpreted).

A free format card may contain up to 160 characters. On translation into fixed
format, a free format card will be divided into one or more fixed format cards depending
on how many card separators “;” are encountered. Each fixed format card may hold
up to six strings; these strings are numbered 1 to 6.

String 1 is examined to see if the first 12 characters identify the card as an indicator.
If so, these characters are placed in columns 1 to 12 on the card and the remaining
strings discarded. Otherwise, the card is a data card and the first two-characters of
string 1, together with the most recently identified indicator card are used to determine
the structure of the remainder of the card; two character code must occur as field 1 in
the indicated section of Sections 3–5 of this report. The first 2, 10, 10, 12 (41 on some
SEIF/SGIF cards), 10, and 12 characters of strings 1–6, respectively, are extracted and
placed on a single data card starting in columns 2, 5, 15, 25, 40, and 50, respectively.
Left-over parts of strings are discarded. The assembled card is now in fixed format and
may be interpreted as such. Thus although a free format card may appear to allow
more flexibility, the requirement that the translated card conforms to the fixed input
format places considerable responsibility on the user to specify the content of strings
correctly.

As an example, a free format variant of the SDIF file given in Figure 3.21 might
be:

NAME DOC

FREE FORMAT

GROUPS;E GROUP1;E GROUP2;E GROUP3

VARIABLES;_X1 GROUP1 1.0;_X2 GROUP3 1.0;_X3

BOUNDS;FR BN1 X1;LO BN1 X2 -1.0;LO BN1 X3 1.0

UP BN1 X2 1.0;UP BN1 X3 2.0

ELEMENT TYPE

EV ETYPE1 V1;EV ETYPE1 V2

EV ETYPE2 V1;EV ETYPE2 V2;EV ETYPE2 V3

IV ETYPE2 U1;IV ETYPE2 U2

ELEMENT USES

T G2E1 ETYPE1;V G2E1 V1_X2;V G2E1 V2_X3

T G3E1 ETYPE2;V G3E1 V1_X2;V G3E1 V2_X1;V G3E1 V3_X3
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T G3E2 ETYPE1;V G2E1 V1_X1;V G2E1 V2_X3

GROUP TYPE;GV GTYPE1 ALPHA;GV GTYPE2 ALPHA

GROUP USES

T GROUP1 GTYPE1; GROUP2 GTYPE2

E GROUP2 G2E1;E GROUP3 G3E1;E GROUP3 G2E2

ENDATA

7 Other Standards and Proposals

There have been a number of other proposed standards for input. The most popular
approaches use a high-level modelling language to specify problems. Typical examples
are GAMS [1], AMPL [7] and OMP [4]. Such approaches are useful for specifying
repetitious structures, but do not really attempt to cope with useful nonlinear structure
(like invariant subspaces). Recent work [8] hopes to overcome this disadvantage.

We have recently become aware of other suggestions for the input of large-scale
structured problems. These proposals are based upon representing nonlinear functions
in their factorable [13] or functional forms [15]. Such forms are the the logical extensions
of (2.1) in which a function is decomposed completely into basic building blocks. The
advantage of such schemes is the potential for the automatic calculation of derivatives,
but this must be weighed against the difficulty of describing how the building blocks
are assembled. We await further details of these interesting proposals.

8 Conclusions

We have made a proposal for a standard input format for the specification of (large-
scale) nonlinear programming problems. In its full generality, the user needs to provide
three input files. The first describes the structure of the problem and the decomposition
of the problem into group and element functions. The second and third then specify
the values and derivatives of these functions. It is anticipated that the first file will
be used to provide input parameters for a user’s optimization procedure, while the
remaining two will be used to generate problem evaluation subprograms.
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