GeneralCUTEr documentation

N. I. M. Gould D. Orban Ph.L. Toint

June 26, 2006

CERFAcsTechnical Report TR/PA/02/13

Contents

1

Installation and usage 6
1.1 Installingand managinQUTEr i v i i e e e e e e 6
1.1.1 install _cuter e e 7
1.1.2 update _CUter e e e e 11
1.1.3 wuninstall — _cuter e 12
1.1.4 RebuilldingCUTEr e e e 13
1.2 TheCUTErtree o o e e e e e e e e e s s e e e e 13
1.3 InterfacingCUTErand Matlal® 16
1.3.1 MEX-Filesbhasics e 16
1.3.2 CUTErand MEX-Files. 16
1.3.3 UsingCUTErfromwithinMatlab 17
1.34 Addinganewtool. 18
1.4 User-maodifiable parts e 18
15 CUTErtoOIS o e 19
1.6 CUTEISIZES. . . v o o e e e e e e e e e e e e e e 19
1.6.1 tOOISSIZES o e 20
1.6.2 Sizes for the MATLAB interfacetools. 21
1.6.3 RebuildingCUTEr 22
1.7 Driverprograms o v i e e e e e e e e e e e e e e e e 22
1.8 TheSIF decoder e 23
1.8.1 Whereisth&IF decoder?. 23
1.8.2 SIF decodersizes i e e 23
1.8.3 CUTEr and automatic differentiation 23
1.9 Interfaces. e 24
1.10 Creating a new interface for an optimization package 25
1.10.1 General procedure for Fortranand Cinterfaces. 25
1.10.2 Interfacing packages written in€terh 26
1.11 Checking the integrity of &lF file, 28
1.12 Attempting installation on an unsupported architectu 29
CUTE log 34
2.1 CUTELO . . . o e e 34
2.1.1 Updatessince March93 34
2.1.2 Bugfixessince November93 oo 36
2.2 CUTEVErSion 2.0. o o e e e e e e 40
2.2.1 Updatessince January 1995. 40

CONTENTS

3
2.2.2 BugfixessinceJanuary 1995o 40
2.3 CUTEversion 2.99999. e 41
2.3.1 Majoradditions e 41

3 Future versions of CUTEr 42
3.1 Futurefeatures. 42

4 License

Disclaimer

This software was written as a personal project and comdésM@ WARRANTY of any kind, not even
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Please read the file LICENSE in tR&TEr home directory prior to any other manipulation.

The authors assume no responsibility for any use.

The authors, N. I. M. Gould, D. Orban and Ph.L. Toint

Contact

N. I. M. Gould, Computational Science and Engineering Depant, Rutherford Appleton Laboratory,
Chilton, Oxfordshire OX11 0QX, England.

n.gould@rl.ac.uk

http://www.cse.clrc.ac.uk/Person/N..M.Gould

D. Orban, CERFACS, Parallel Algorithms Project, Toulotsgnce.
Dominique.Orban@cerfacs.fr
http://www.cerfacs.fr/ orban

Ph.L. Toint, Facultés Universitaires Notre-Dame de |axP@d, rue de Bruxelles, B-5000 Namur, Bel-
gium.

Philippe.Toint@fundp.ac.be

http://www.fundp.ac.be/"phtoint

Note
This documentation is in constant evolution, and so is tlisvaoe. We advise the reader to consult the
websitehttp://cuter.rl.ac.uk/cuter-www for the latest information, bug fixes and patches concern-

ing CUTEr.

mailto:n.gould@rl.ac.uk
http://www.cse.clrc.ac.uk/Person/N.I.M.Gould
mailto:Dominique.Orban@cerfacs.fr
http://www.cerfacs.fr/~orban
mailto:Philippe.Toint@fundp.ac.be
http://www.fundp.ac.be/~phtoint
http://cuter.rl.ac.uk/cuter-www

CUTETr is a versatile testing environment for optimization an@éinalgebra solvers.
The package contains a collection of test problems, alotiykartran 77, Fortran 90
and Matlab tools intended to help developers design, cozrguad improve new and
existing solvers. This document describes installatichlzasic usage of theUTEr
environment, and is intended to be one of the main docunientaburces available
with the package; other sources include man pages, variBAORIE files and self-
documented scripts.

The test problems provided are written in so-called Stahtiggut Format (SIF), and
a decoder is provided to convert from this format into welfided Fortran 77 and
data files. Once translated, these files may be manipulatebtide tools suitable
for testing optimization packages. Ready-to-use inteddo existing packages, such
as MINOS, SNOPT, filterSQP and KNITRO, are provided.

CUTEr is available on a variety of UNIX platforms, includingnux and is designed
to be accessible and easily manageable on heterogeneawm ket

“When all else fails, read the documentation.” (fortune)

Chapter 1

Installation and usage

1.1 Installing and managingCUTEr

The current version aUTEr comes in the form of a gzipped tarfile. To uncompress andextraCUTEr
distribution from it, move the file to a new directory of yourace—we shall refer to this directory as
$CUTER—and issue the commands

prompt% gunzip cuter.tar.gz
prompt% tar xvf cuter.tar

or, more compactly,

prompt% gunzip -c cuter.tar.gz | tar xvf -

On GNU-based INUX systems, this is also done by the single command

prompt% tar zxvf cuter.tar.gz

If you want theCUTEr files to be accessible to a number of users on a shared filesysteyour local
network, you might need privileged access to your machioety have these steps performed by your
system administrator.

The current installation is via a text-based interface, Imch the user is prompted for choices pertaining
to the desired installation. The main installation scripinstall _cuter and interacts with a number
of auxiliary scripts. We examine these scripts in turn, gsam example of £UTEr installation on a
shared-filesystem network. The scripts provided are:

1. install _cuter : installs a new instance @fUTEr on the system,
2. update _cuter : updates files in an installed instanceGyTEr,
3. uninstall _cuter : remove a particular instance OUTEr installation.

In addition the the three above scripts, we will also examaimeanner to re-generate partsGfTEr, due
to the modification of one or more files.

These scripts can be found in

CHAPTER 1. INSTALLATION AND USAGE 7

$CUTER/build/scripts

Suppose, by way of example, that your local network contdiagollowing machines (amongst others).

1. a SUN Ultra workstation running Solaris with an instali&aeh Fortran 90 compiler, 90,

2. an intel-based personal computer runningux for which the Gnu Fortran 77 compiler, g77, is
installed, and

3. a Compagq Alpha running Tru-64 for which the Compaq Fortacompiler, f77, is available.
In the remainder of this documentation, we describe theabtbe aforementioned scripts based on this

example of network. Assume that you wish to install an instaof CUTEr for each of these machines,
according to Tablé.. L

| Machine | Compiler| Size | Precision|

SUN fo0 large double
Intel g77 medium | single
Compaq fo0 large double

Table 1.1: A possible installation GUTEr on a shared-filesystem network. Size refers to the (maximum)
dimension of the examples you wish to run, while Precisiamoties the floating-point precision required.

1.1.1 install _cuter

This script serves the dual purposes of installing theahitistance ofCUTEr on your system and of
installing an additional instance, for a different arctitee, where byarchitecture we mean the combi-
nation machine—operating system—compiler—size—pmtisi

Assume, for the purpose of an illustration, that you wismtdall all your different instances GfUTEr in
the directory$CUTER = /usr/share/cuter/ . Unpacking thecUTEr distribution in thesSCUTERdirectory
and launching the initial installation, say for the SUN @ltnachine, is done by simply typing

prompt% install _cuter

at the command prompt. However, before issuing the instatimand, we recommend that you check the
files systentf , where 'systemrepresents your operating system, to make sure the consihacke are
correctly defined for your environment, and that the tempyodérectory is correctly set. The current di-
rectory ‘" mustnotbe used as temporary directory. Once you have issuedstat _cuter command,
you will be prompted for information regarding the instaiwée&UTEr you wish to install. The first ques-
tion concerns your machine. In this case, select “Sun watikst’ (7). Next, select the operating system
your machine is running. Here, we select “Solaris” (1). Yoa then faced with a list of available Fortran
compilers for your machine (without any guarantee thater@smpilers are actuallinstalled on your
machine, simply those we know are available for the macliperating system combination you have
selected)—we want to select “Sun f90” (4)—and a list of alaié C/G+ compilers for your machine—
we select Sun Workshop6+€(2). Select next the precision of tl®JTEr tools (sngle or dbuble), and
their size (sall, medium, Brge or cistomized).

CHAPTER 1. INSTALLATION AND USAGE 8

Once this information has been provided to the installasionipt, you are given a default directory name
where the selected instance @ITEr will be installed. This directory is a subdirectory $EUTERthat
you chose earlier (in this cadasr/share/cuter/). For the present instance, the default directory is

lusr/share/cuter/CUTEr.large.sun.sol.f90

reflecting the selections you made during the early instafaphase. This directory name should be
self-explanatory and should help you and other users deterwhere each installed instance@JTEr

is actually stored. Notice that the precision is not reflédtethe directory name. The reason is that
both single and double precision instancesCofTEr may be installed for the same machine-operating
system-compiler-size combination; these will be storetth@single/ anddouble/ subdirectories of the
above directory. If you wish, you may redefine the directaayne and give it whatever name you like—it
need not be a subdirectory 8£UTER Note however that you should give thdl pathnameof the new
directory that you choose,g.

Thome/mjdpowell/software/yetAnotherCuter

even if this new directory is a subdirectory of t#@UTERdirectory:

{usr/share/cuter/aCustomCuter

It is probably good practice to be content with the defauihaar not to give it a cryptic or ambiguous
name. After checks to see if a similar distribution has ayeaeen installed and for the existence of the
specified directory, the installation itself begins.

The scriptinstall _cuter then creates the necessary directory structureakefilesand configuration
files. The final step of the installation is left to the user andescribed below.

Once this phase is completmstall _cuter reminds you of what you should add to yowashrc ,
.Jbashrc , or whichever UNIX configuration file corresponds to the klgeli use. The directory struc-
ture after the initial installation is as described in Gi¢TEr paper provided in theUTEr distribution and

in 81.2and Figl.L In the case we are concerned with, @i¢TERenvironment variable should be set to
lust/share/cuter andMYCUTERo /usr/share/cuter/CUTEr.large.sun.sol.f90 (or the alterna-
tive directory you specified during the installation phase)

install _cuter also advises you to read the varidREADMHiles scattered over the directory tree under
$MYCUTERWe now describe the final step of the installation udihgakefiles There is dUmakefilein
each subdirectory dMYCUTEREach of thesé&Jmakefilesneeds to appropriately use the configurations
files stored iMBMYCUTER/config so as to generatéakefilessuited to your local system. This process is
usually referred to asootstrapping. This is done by changing &YCUTERind issuing the command

prompt% /install _mycuter

at the command prompt. Please note that if both single anblelqarecision were installed, the script
install _mycuter requires a command-line argument, telling it for which Bi®n it should bootstrap

the Umakefiles In an attempt to follow the main guidelines for the CPP — thgr€processor, on which
Umakefilesare based — the argumentibstall _mycuter takes the form of a symbol definition. More
precisely, if the user wishes to remake the double precigosion of CUTEr, the command is

prompt% finstall _mycuter -DDoublePrecision

1We have reused this terminology, used for Imakefiles—cortiipn files generally used to install the X-Window system.
Umakefilesare in fact a much simplified version bhakefiles

CHAPTER 1. INSTALLATION AND USAGE 9

and similarly, for the single precision version,

prompt% finstall _mycuter -DSinglePrecision

Refer to the filelMPORTANTfor the latest details. Do not l@take’s output confuse you. On allhux
system, and becaus®ke is usually accompanied by th@ command-line option, using the standard g77
compiler, the output of the above command looks like

umake -l./config -DIsg77 -DLargeSize -DDoublePrecision

+ /binfrm -f Makefile.bak

+ /bin/mv Makefile Makefile.bak

umake -l./config -DTOPDIR=. -DCURDIR=. -DIsg77 -DLargeSi ze -DDoublePrecision
making Makefiles in bin...

make[1]: Entering directory ‘/home/do/Cuter4dLinux/bin’

make[1]: Nothing to be done for ‘Makefiles'.

make[l]: Leaving directory ‘’home/do/Cuter4Linux/bin’

making Makefiles in double...

make[1]: Entering directory ‘/home/do/Cuter4Linux/doub le’
making Makefiles in double/bin...

make[2]: Entering directory ‘/home/do/Cuter4Linux/doub le/bin’
make[2]: Nothing to be done for ‘Makefiles'.

make[2]: Leaving directory ‘home/do/Cuter4Linux/doubl el/bin’
making Makefiles in double/config...

make[2]: Entering directory ‘/home/do/Cuter4Linux/doub le/config’
make[2]: Nothing to be done for ‘Makefiles'.

make[2]: Leaving directory ‘home/do/Cuter4Linux/doubl el/config’
making Makefiles in doubleflib...

make[2]: Entering directory ‘/home/do/Cuter4Linux/doub le/lib’
make[2]: Nothing to be done for ‘Makefiles'.

make[2]: Leaving directory ‘/home/do/Cuter4Linux/doubl ellib’
making Makefiles in double/specs...

make[2]: Entering directory ‘/home/do/Cuter4Linux/doub le/specs’
make[2]: Nothing to be done for ‘Makefiles'.

make[2]: Leaving directory ‘/home/do/Cuter4Linux/doubl e/specs’
make[l]: Leaving directory ‘/home/do/Cuter4Linux/doubl e

This isnormaloutput and it indicates that everything worked out smoothnbke is simply echoing what
it attempts to do in each subdirectory. A message like “Nmghio be done for ‘Makefiles’.” simply
indicates that the subdirectory whemeke is currently working does not have further subdirectori@s.

most systemsnake is less verbose.

The above command should be able to properly generatdakefilesin each subdirectory. Theséake-
files should also only contain standard commands, as every éfésrtbeen made to avoid using exotic
Makefilefeatures and capabilities, such as $@@onstruct. AREADMHile accompanies eveiylakefile

to describe what it does and which targets it recognizesrdme advised to take a look at these files.
The documentation files and a basic knowledgenake should be enough for you to feel comfortable
with the (re)generation of the various partsGTEr. Once theMakefilesare generated, the only thing

CHAPTER 1. INSTALLATION AND USAGE 10

that remains to be done is the usuake all . However, as users who have some experience make
know, make outputs a lot of information—it basically echoes to the dtam output every action it takes.
The-s command-line option tmake lowers its verbosity level and basic information on how tidd
progresses only is printed. Thus, users should BWdEr using the command

prompt% make -s all

This command completes the installationaTEr, usingUmakefiles On my Linux system, the installa-
tion takes a couple of minutes anm@ke’s output looks like

Getting UNIX commands right [OK]
Casting script.sed [OK]
Casting cast.sed [OK]
Casting local.f [OK]
Adding timer [OK]
Building local.o [OK]
making all in ./bin...

Casting cob [OK]
Casting fil [OK]
Casting gen [OK]
Building uofg.o [OK]
Building uprod.o [OK]
Building ureprt.o [OK]
Building usetup.o [OK]
Building ush.o [OK]
Building uvarty.o [OK]
Archiving libcuter.a [OK]

making all in double/specs...

On workstations, the installation should be expected te takger. During this phase, keep an eye on
the screen and look for tHOk] indicators. Shouldnake come across some difficulty, this sequence
of indicators should be interrupted by an error message. nbovkmore about the problem, read the
README file in the directory where the problem occured to wyirtdentify the target whicimake was
attempting to build, and re-runake on that target without thes option.

You may then install a new instance ©OUTEr, which may be for a different architecture, or one corre-
sponding to an already-installed instance, with a diffepgacision or size. In all cases, the environment
variableMYCUTERhould point to the current, working, instanceGMTEr.

Theinstall _cuter script keeps track of all installed instances@J§TEr on your system in the log-
file $CUTER/log/install.log . This file may be used, for instance, to hau&CUTERpoint to the
right distribution. For the purpose of illustrating the &bpassume the three distributions given in Ta-
ble 1.1 are installed in their default directory. Besides date imfation, the following will be found in

$CUTER/log/install.log , Where the exclamation mark)(is a separator.
double large Sun-workstation sol 90 ! $CUTER/CUTEr.large .sun.sol.fa0
double medium Intel-like-PC Inx g77 ! $CUTER/CUTEr.medium .pc.Inx.g77

double large Compag-Alpha t64 f90 ' $CUTER/CUTEr.large.al p.t64.f90

CHAPTER 1. INSTALLATION AND USAGE 11

1.1.2 update _cuter

As it is our intention to upgrade over time (or fix if necesgahe tools supplied in theUTEr package,

a mechanism for keeping an installed system up to date, amst@ll newer instances of the tools, is
required. This is the role of thepdate _cuter script. If all goes well, you should not have to use
update _cuter immediately. Announcements of bug-fixes and enhancemehtsesposted and indicated
on the website. There are two forms of the command.

In its first form,update _cuter takes two command-line options, as follows

prompt% update _cuter filename

wherefilenameis the name of the file to upgrade, possibly specified with bh.p8tippose, for example,
that the fileufn.f has been improved so as to perform its task faster, upgradingcurrent instance of
CUTET is achieved by typing

prompt% update _cuter ufn.f

at the command prompt. This command first copies the new ediledo proper location, which is in this
case$CUTER/common/src/tools . If there are currently both single and double precisiorainses, you
will be asked to choose which you would like to update; if éhex only one instance und&MYCUTER
the precision will be chosen accordingly. The script thestzand compiles the incoming file, and finally
updates the€UTEr library ($MYCUTER/double/lib/libcuter.a). Of course, corresponding actions are
performed depending on the typefdéname if it is a script, it is only cast, and stored in its properqaa
and if it is a documentation file, it is simply moved$6UTER/common/doc .

In its second formupdate _cuter takes three command-line options, described as follows

prompt% update _cuter -a filename

wherefilenameis the name of a file describing a list GUTEr files to be upgraded. The fil@ename
should contain

1. onits first line, the directory where the new (upgrade@sfdan be found, and

2. on subsequent lines, the names of those upgraded filesblyosreceded by their destination di-
rectory. A single file per line should be given.

Note that preceding the file names by their destination thrgds not compulsory; in fact, the path is
ignored andipdate _cuter tries to determine the correct path for itself. As an exangl@pose that the
toolsufn.f , install _cuter , compiler.cry.unc.fo0 and sdknit.pro have been upgraded, and are
temporarily stored ithome/upgrade . A corresponding input file might be

/home/upgrade

$CUTER/common/src/tools/ufn.f

$CUTER/build/scripts/install _cuter

compiler.cry.unc.fo0

sdknit.pro

but exactly the same result would be produced by the siméer fi

CHAPTER 1. INSTALLATION AND USAGE 12

/home/upgrade
ufn.f
install ~ _cuter
compiler.cry.unc.fo0
sdknit.pro

or by the deliberately confusing file
/home/upgrade
lusr/sharefjunk/ufn.f
/home/upgrade/install _cuter
/home/downgrade/compiler.cry.unc.fo0
lopt/degrade/sdknit.pro

As above,CUTEr copies these files frormome/upgrade to their proper location, prompts for the pre-
cision required (if necessary), casts and, where necessampiles the incoming files, and updates the
specified instance stored und@tYCUTER

The additional command-line optiom forcesupdate _cuter to simply move the files to their proper
location and to skip compilation. Help may be obtained frapdate _cuter through either of theh,
-help or--help flags.

To summarize, the complete synopsisipdate _cuter is as follows

update _cuter [-h | -help | --help] [-m] [-a listFile | newfFilg

In the situation where&CUTEr has been unpacked but no further installation steps wefferpesd, or
all current instances were deletegdate _cuter still can move the updated source files to their proper
location, skipping the compilation phase. The same syrgaabave can be used.

Caution: attention should be paid to the fact thatate _cuter works bysource -ing the UNIX com-
mands from the fil&MYCUTERprecisiorfconfig/lcmds (where precisionis the required precision) and
that these commands define the temporary directory usedgdoompilation phase. In most cases, this
temporary directory is simplitmp . This temporary directorynust notbe the same as that specified in
the first line ofupdate _cuter ’s input file (home/upgrade in the examples above).

1.1.3 uninstall _cuter

The scriptuninstall ~ _cuter is used to remove a previously installed instanc€0TEr from your sys-
tem. If called with no argument, the user will be asked to aleoehich distribution to remove from a list
of the instances found on the system. Otherwise, the oniynaegt is the name of the directory containing
the distribution to be removed. We illustrate the secone.cé&eferring again to Table.1, assume we
wish to remove the Compag-Alpha distribution. This is doyéslsuing the command

prompt% uninstall ~ _cuter $CUTER/CUTEr.large.alp.t64.f90

at the command prompt. If this directory contains both timglsi and double precision instances, you
will be prompted for which should be removed. There is no jilgy, at the moment, to remove both
instances at once. If single or double precision instandg isnpresent, the whole directory will be
deleted as will the corresponding entry $8UTER/log/install.log . Note that un-installing should
be done from the same machine from which the installationreand was issued, as the corresponding

CHAPTER 1. INSTALLATION AND USAGE 13

directory might not be recognized on other machines. Igsthia command

prompt% uninstall _cuter --help

will display a short help message. The script is itself seléfumented and the user may consult it for
more information.

1.1.4 RebuildingCUTEr

A rebuild of CUTEr may turn out to be necessary whene@elTEr informs the user that the workspace
dimensions need to be increased—a rebuild may also turio dethecessary whenever prototype files are
modified, or in general, whenevanybasic file is modifiedCUTEr itself usually issues warning messages
whenever the workspace is insufficient, urging the userdesse a particular (set of) parameters. These
parameters may be tunedtools.siz which can be found in

$MYCUTERprecisioifconfig

whereprecisionis either ‘single’ or ‘double’, according to your installa. For the change to take effect,
the CUTEr tools need to be cast and compiled again. Assume the Satatilation is modified. All
the user needs to do to make sure he or she rebuilds everytidhgeeds to be rebuilt is change to the
directory$MYCUTERand issue a

prompt% make -s all

make then takes care of everything and rebuilds whichever tamgbend on the updated files.

1.2 TheCUTEr tree

One of the defects afUTE is that it was not designed to simultaneously support a midtform envi-
ronment, that is instances of the environment that couldsieel simultaneously from a central server on
several (possibly different) machines at the same time. eldh@r, usingCUTE on a single machine in
conjunction with several different compilers (a case thafiiently occurs when testing new software) is
impossible. Furthermore, handling different instancethefenvironment corresponding to differesites

of the tools (that is the size of the test problems that theyh@andle) is also impossible. The reason for
these difficulties is that the structure of ta®TE files, as described IrB[CGT94, does not lend itself to
such use, since it only contains a single subtree of objdets fif we call the combination of a machine,
operating system, compiler and size of the toolsaeshitecture the obvious solution is then to allow
several such subtrees in the installation, one for eachitactire used.

However, as soon as the possibility of using architectupeddent subtrees is raised, the proper identi-
fication of the parts (scripts, programs) of the environntbat are independent of the architecture also
become an issue. Since it would be inefficient to store capii¢isese independent scripts and programs
in each subtree, it is natural to store them in a data streisttnich is itself disjoint from the dependent
subtrees. Finally, the multiplication of subtrees contajrsometimes very similar but yet vitally different
data makes the maintenance of the environment substgntiaite complicated, and therefore requires
enhanced tools and a clear distinction between the partiseoéivironment that are related to testing
optimization software and those related to its own maimeaa

The directory organization chosen ©OUTEr, shown in Figurel. 1, reflects these preoccupations. We now

CHAPTER 1. INSTALLATION AND USAGE 14

briefly described its components.

Starting from the top of the figure, the first subtree undernttaén SCUTERdirectory (the main root of
the CUTEr environment) iduild , which essentially contains all the files necessary forifegion and
maintenance. Itarch subdirectory contains the files defining all possible aedtitres that are supported
by CUTEr, allowing the user to install new architecture dependebtrsas in an evolving manner, de-
pending on the testing needs, the evolution of the platfpsystems and compilers. Tlipeototypes
subdirectory contains the parts of the environment whiake ha be specialized to one architecture before
it can be used. We call such filpsototypesand the process of specializing them to a specific architectu
casting The prototype files include a number of tools and scriptssehmal form typically depends on
compiler options and the chosen size of the tools. Findlly)ast subdirectory dfuild , namedscripts
contains the environment maintenance tools and variousndectation files.

The second subtree undBEUTERIs calledcommonand contains the environment data files that are rele-
vant for its purpose, the testing of optimization packagesthat are independent of the architecture. Its
first subdirectorydoc, contains a number of documentation files concerning theamnwment (such as a
description of its structure, the description of procedoréllow for interfacing the supported optimiza-
tion packages, the complete SIF reference document, .ut jydi a description of theUTEr tools and
scripts themselves. These are documented im#dmesubdirectory (and, as is common on Unix systems,
its manl andman3 subdirectories). Therc subdirectory contains a number of subdirectories thatagont
the source files for many of the environment utilitigmls contains the sources of the Fortran tools used
in user’s programs, whilmatlab contains all the “m-files” that provide a MATLAB interface tioe envi-
ronment. Thekg subdirectory obrc is used to stored the information related to the variouswipétion
packages for whiclCUTEr provides an interface. There is one subdirectory for each package (we
have represented that for the COBYLA aviil2 packages), typically including an algorithmic specifica-
tion file or the source code of the package if available. Thelsactoryinclude of commoncontains the
necessary header files for the interfaces betw&ghEr and C codes. The last subdirectorycommon

sif , contains a few test problems $tF format.

The next subdirectory und§CUTERIs calledconfig and contains all the configuration and rules files
which are relevant tetmakewhen the latter is used tmootstrapthe variousimakfilesin order to create
the necessariylakefiles

Thelog subdirectory offCUTERcontains a log of the various installations (and, possiblipsequent
un-installations) of the environment for the various aiettures.

The remaining subdirectories 8€UTERare all architecture dependent: each of them corresponiti® to
installation of CUTEr on a specific machine, for a given operating system and cemaild for a given
tool size. The figure only represents one, but the contionadbts at the bottom of the leftmost vertical
line indicate that there might be more than one. The nameeasetidirectories are (by default) auto-
matically chosen at installation, but a user of one of theg#rees would typically give it a symbolic
name, like$MYCUTERto refer to the instance afUTEr currently in use. Each architecture-dependent
subtree is divided into its single and double precisionainsés gingle anddouble , respectively), each
of these containing in turn four subdirectories. The fibst,, contains the object files corresponding to
the optimization packages driving programs and, if relevahthe package codes. The secolil, ,
contains library of cute tools and, if relevant, librariesaciated with the interfaced optimization pack-
ages. Theonfig subdirectory contains the architecture dependent filésvbie used to build the current
$MYCUTERubtree (they are reused when a tool or optimization padsaggted or updated), whipecs
contains the algorithmic specification files for the optiatian packages that are architecture dependent,

CHAPTER 1. INSTALLATION AND USAGE

$CUTER

- arch |
- buid I prototypes |
H scripts |
. doc |
manl ‘
H man
man3 \
- tools |
H common | src I matlab |
cobyla |
pkg
- include \ﬂ{
hsl _vel2 |
N H o sif |
| config |
H g |
4 bin |
4 bin |
$SMYCUTER
for a given . s lib |
7 machine - single H :
op. system - config |
compiler
size ﬂ{ SPecs ‘
4 bin |
lib
4 double }:{ ‘
H config |
_{ specs ‘

Figure 1.1: Structure of theUTEr directories

15

CHAPTER 1. INSTALLATION AND USAGE 16

if any. Finally, SMYCUTER/bin contains those scripts which are architecture-depentiahtot precision-
dependent.

The fact that the€UTET tools are now stored in the form of libraries (while they wst@ed as a collection
of individual object files iNCUTE), is another novel feature. This allows a much simpler designew
optimization package interfaces, since the interface ngdoneed to specify the exact list of tools which
have to be loaded together with the package.

A final new feature of the environment organization is that documentation is available via the usual
man command for the scripts and tools, and both in acsii and pdfdts for the rest. It is hoped that this
will make access to the relevant information more converfianusers.

1.3 Interfacing CUTEr and Matlab®

We describe in this section ha@QUTET is interfaced with Matlab, remind basic concepts about MEDMs
and describe how new interfaces should be added.

1.3.1 MEX-Files basics

Besides being a self-sufficient environment, Matlab presidn Application Program Interface (API) to
support external user-defined subroutines. This interfa@ realized through dynamically-linked sub-
routines, compiled by Matlab from C or Fortran source codérred to as MEX-Files. For a thorough
exploration of MEX-Files accompanied by numerous examples details, refer to your local Matlab
documentation. Recall also that all API-related docuntentas available online using the Matlab Help
Desk. We now briefly review the main features of MEX-Files &t the user should provide for Matlab
to be able to compile the interface.

Any user-provided C or Fortran computational routine majnberfaced with the Matlab environment us-
ing themex script. Within Matlab, thenex command takes the name of the routine to be interfaced as an ar
gument plus a number of options and possibly other files. Retbemex script documentation for a com-
plete list of all supported options. For every routine therugsishes to interface with Matlab,gateway
routine must be provided in order to inform Matlab about theber of arguments that the computational
routine takes and what their type is. This gateway routiriks tiae user-defined computational routine
as a subroutine. The file resulting of the compilation ankiitig of these two routines is called a MEX-
File. Assume your own Fortran routimgFactor.f is to be interfaced with Matlab and that a gateway
is provided in the filgrFactorg.f , Matlab compiles and linkgrFactor.f once itis given the command
matlab% mex grFactor.f grFactorg.f

Possibly, if several user-defined routines are to be comhpilghin Matlab, the gateway routine may
interface them all at once. For details regarding the coostm of a gateway, the reader is referred to the
Matlab documentation.

1.3.2 CUTEr and MEX-Files

With CUTETr, gateway interfaces to th@UTEr tools are provided in three files. The filols.f inter-
faces the unconstrained optimization toa®pls.f interfaces the constrained optimization tools and

CHAPTER 1. INSTALLATION AND USAGE 17

gtools.f contains general tools used tipols.f andctools.f . These gateway files can be found in
$CUTER/common/src/tools/

while shortcut files to call the corresponding routines maydund in
$CUTER/common/src/matlab/

For example$CUTER/common/src/matlab/ contains the fileisetup.m which allows the user to simply
call theusetup tools by typing

matlab% [x,bl,bu]=usetup;

at the Matlab prompt instead of

matlab% [x,bl,bu]=utools(’usetup’);

Note that the calling sequence from within Matlab may to s@xtent differ from the “usual” Fortran
calling sequence.

Help is available from within Matlab the usual way, by typing

matlab% help toolname

For example,

matlab% help usetup

briefly documents thesetup tool. Note that MEX-Files created from Fortran source cods/ roanly
handle double precision data. As a general rule, a C or Fortratine or function compiled and linked
into a MEX-File is called using

matlab% [01,02,...,0n] = function _name(iy,iz2,...,im);

whereoy,0y,...,0, is the output arguments list (specified within square briaglkandiy,io, ... iy is the
input arguments list.

The gateway interfaces use th@Copy__ construct by default. If your C or Fortran compiler suppadinis
%val construct, which implements calls by address instead ¢§ bgl value, it should be used so as to
free memory used by (no longer necessary) temporary vagabid to speed up execution. Besides being
more intuitive, théval construct also considerably eases the programming eftoottens the code and
makes better use of available memory.

1.3.3 UsingCUTEr from within Matlab

Compiling and linking theCUTEr tools with a solver written in C or Fortran, and to be used irtl&a
is done by creating the corresponding MEX-File. This is theppse of the two scriptsdmx and mx,
found unde$SMYCUTER/bin. The purpose of these two scripts shadows that of the othiptsssdmx first
SIF-decodes the problem it is given as an argument and l¢hgageation of the MEX-Files toix. mx
invokes the C or Fortran compiler distributed with Matlahks all the object files and libraries together
and finally creates the MEX-File, which can be called as alezguatlab function.

Versions of Matlab older than 6.0 used to have separate C autichi compilers, often called respectively
cmex andfmex . Recent versions have merged the two compilers into meg, making the other two
obsolete. You should update your f881YCUTERprecisioifconfig/cmds to reflect your local instance

CHAPTER 1. INSTALLATION AND USAGE 18

of Matlab. Please also upda$€UTER/build/arch/system. your_systemaccordingly, to make your
modifications system-wide. For the above reason,QU&Er interfaces to Matlab are no longer called
sdmex andmex, butsdmx andmx

For instance, to compile and link all the unconstrai@4rEr tools with the problemMSQRTALS.SIF, use
prompt% sdmx -u MSQRTALS

Note the use of theu command-line option tedmx in order to use the unconstrained tools. To use
the constrained tools, simply omit the option. Also note that Matlab MEX-Files always use double
precision and therefore, a double-precision SIF decodmildihave been installed on the system.

Place the MEX-File thus generated in the same directoryefilés produced by the SIF decoder, and in
particularOUTSDIF.d, and the interfaces described ih.8.2are ready to be called from Matlab.

If your problem has already been decoded, the MEX-File car@enerated using the command

prompt% mx -u

1.3.4 Adding a new tool

Should the user add new C or Fortran toolsSCIoTEr that are to be interfaced with Matlabtools.f
and/orctools.f should be updated accordingly and the correspondmdile should be created and
stored in the director$CUTER/common/src/matlab/ . For information on MEX-File debugging, refer to
your local MATLAB documentation.

The user should also pay attention to their local implentemteof pointers. If themxCopy__ construct

is used, pointers should be declaredirasger8 on DEC Alpha and 64-bit SGI machines and as
integer*4 on all other platforms. If the local Fortran compiler sug@pdhis option, a clear multi-platform
code may be obtained by having the C preprocessor map theepoia the correct declarations at the pre-
processing stage.

Note finally that after compilation and linking, the namelwd resulting MEX-File will have an extension
that depends on the platform on which compilation was peréat. For example, this extensiomisxsol
on Sun machines running Solaris, aneksg64 on 64-bit SGI machines.

1.4 User-modifiable parts

Nearly all the Fortran source files, stored@UTER/common/src/tools , have user-modifiable parts.
These parts are not directly included in the Fortran souomiechbut cast prior to compilation. The
files containing the user-modifiable data &ras.siz andsifdec.siz . After the initial installation,
these files will be found in th€UTEr directory $MYCUTER/[single|double]/config . If modified,
the CUTEr distribution may be rebuilt using the new parameter valuethbrebuild script, located in
$CUTER/build/scripts

Some Fortran source files, lildsf.f andslct.f , have hardcoded user-modifiable parts. These are
usually located at the top of the file, between banners, ssich a
Comemenene THE FOLLOWING SPECIFICATIONS MAY BE MODIFIED BY THE USER ------

and

CHAPTER 1. INSTALLATION AND USAGE 19

[CR— END OF THE USER MODIFIABLE SPECIFICATIO N ———

1.5 CUTEr tools

Problems are fully described in a Standard Input Format)(f8&= This file may subsequently be decoded
to provide data and Fortran subroutines for input to a nealirprogramming package.

Here we describe auxiliary subroutines which are availédiesers to manipulate the decoded data. The
Fortran source of these programs, along with the subraibbé&ined when decoding the SIF file, should
be compiled with the user’s optimization package.

The CUTET tools are described in the man pages, category 3, which maietved using thenan com-
mand, its X interface&man, or, on LINUX systems, by issuinlgss manpagavheremanpages the man
page to be viewed. The man pages are stor&dCUTER/common/man, and this directory should appear
in the usersMANPATHTable1.2 contains those tools related to unconstrained or boundt@ned mini-
mization as of June 26, 2006, along with a brief descriptéord Tablel.3 contains a list offUTEr tools

for constrained minimization. Thereprt andcreprt tools produce statistics about a particular run.
Users of the previous versions OUTE will notice the strong similarity in the tools names.

Whenever the description states that the Hessian matrixhafrehe objective or the Lagrangian function
is in sparse format, it is implicitly understood that it i®md in coordinate format. Explicit mentions
appear whenever this matrix is stored in finite-elementa&br

Note on thecreprt tool

As CUTEr features tools allowing users to evaluatsi@agle constraint and as reporting the number of
evaluations okachconstraint in the final statistics is not practical, theista&ss report a measure of the

this quantity, defined as

#evalc) = zi#eTva(ci)’

wherey;#evalc) is the sum of the total number of times each individual camstris evaluated anch

is the number of constraints in the problem. Note that if tlyp@thm always evaluatall constraints
at once, this measure is an integer. Otherwise, it may belauesber. The purpose of this ratio is to
provide a measure of the number of constraint function esmlns (as compared to its maximurm) in
the course of the iterations.

1.6 CUTEr sizes

The CUTEr package is distributed with three default “sizes”: largedimm, and small. In addition, there
is acustomsize, which, as the term indicates, may be suitable for tsitag demanding a specialized
configuration. These sizes refer to the size of the memorjaéa for problem decoding and solution,
and hence are directly related to the size (the amount oj déathe problems thaCUTEr can tackle. It
may happen that the predetermined sizes do not fit your tavproblem or your machine, and that you
wish to specify your own. Typically, when running too largprablem,CUTEr will complain that one of
the size parameters is too small and stop. You then have tease this parameter (if this is possible on

CHAPTER 1. INSTALLATION AND USAGE 20

your machine) in order to handle the problem. This modificatf theCUTEr array sizes is explained
below.

We first note that the dependency on problem size occurs inthetdecoding of the probleBiF file into
data structures and subroutines and in the computationeofeitjuired problem values by the provided
evaluation tools. Indeed, the problem dependent datalisdpécified by its associatediF file and must
be taken into account in all stages up to the numerical solysrocess. Therefore, the size of both the
SIF decoder and the tools (and indeed, the interface optimireust be adequate for the problem.

The actual choice of one of the predetermined sizes is made wimning thénstall _cuter command,
which prompts the user for the desired size. In fawtall _cuter , or the Makefiles depending on
which CUTEr you are using, cast the source code against a “size maskéspmnding to the selected size,
and thereby determines the dimensions of the various ans®gin the code. The assignment statements
are differentiated by their first four characters:

CBIG | specifies the large size
CMED| the medium size
CTOY | the small size

CCUS| the custom size

Note that the custom size is first thought of as larger thattetige size, but nothing prevents the user from
building an intermediary size or a smaller size than the iog.s

Changing the size of theUTEr distribution in the sense just described may call for a phré-installation.

If most (or all) parameters must be, say, increased, it mightvorth considering simply re-installing
CUTETr using a larger sizee(g. large if medium turns out to be insufficient for your purpgseko that
end, executénstall _cuter again and select the correct size. In case very few parasneéad to be
changed, the procedure described below might be considevechow examine this procedure in more
detail.

1.6.1 tools sizes

The tools sizes are gathered in the $ildY CUTERprecisiorconfig/tools.siz , which contains the fol-
lowing parameters.

\ Parameteﬂ Brief description \

LIWK the size of the integer workspace array used by the algosithm

LWK the size of the single or double precision workspace arrag us

the algorithms, according to the precision of the instanstailed

LLOGIC the size of the logical workspace array used by the algogthm

LCHARA | the number of ten character strings used as workspace bygibrétlams
LFUVAL the size of the array used to store the problem’s functiondendative values

These parameters are assigned a value upon initial irigiallaf CUTEr on the system. These values
should be changed accordingQUTEr messages issued at run-time, &uirEr should be rebuilt.

Note that the main drivers, whose names match the regulaessipns'ma.f and*ma.f90 , declare
parameters such aMAX-the maximal number of constraint functions in the problewhieh are not

CHAPTER 1. INSTALLATION AND USAGE 21

found intools.siz . It may happen thaCUTEr aborts the solving of a problem because one of these
parameters has not been set, in the main driver source fa@, appropriate value. Since these parameters
are package-dependent rather than architecture-, odspendent, they should be set to an appropriate
valuein the source filand the latter should be recast and recompiled.

1.6.2 Sizes for the MATLAB interface tools

If the size of the MATLAB interface tools is to be modified, tharameterdiIMAX(the maximum number
of variables in a problem) arfdMAXthe maximum number of constraints in a problem) should tezed
at the beginning of the filegools.f andutools.f

Changing compiler flags

In some circumstances, it might be useful to alter the preddfcompiler flags. An example might be
when some new level of code optimization becomes availablgooir machine. Note that care should
be exercised with code optimizers: we know of cases wherepltimizers introduce real bugs into the
code. As a consequence, it might be a good idea to turn opatiioie off before deciding that some
strange behaviour of the package is anomalous and worthtirgnoT his is another reason why modifying
compiler flags might be useful. Some operating system mwsimight also require that you change
machine dependent constants or procedures (such as thig time

If compiler flags should be changed prior to a rebuild, the skeuld do so by altering th@ompileCmd
and LoadCmd variables corresponding to their compiler in the BMYCUTER/config/ systentf or in
$MYCUTER/config/all.cf

If compiler flags should be changed to affatltsubsequent installations GUTEr, the user should do so
in some or all the file§CUTER/config/ systenzf , including$MYCUTER/config/all.cf

For instance, if the compiler in question is only found on Sthdchines, the filsun.cf should be
modified. If it may be found on any machine, the filecf should be modified.

System dependent constants and functions

All the system dependent constants and functions are sgebaifitheSMYCUTER/config/ systencf or

in $MYCUTER/config/all.cf files, and also in the Fortran fitMYCUTERprecisiorfconfig/local.f

after the initial installation. If these need to be changhd latter file is the one on which to operate
before rebuildingCUTEr. Keep in mind that altering some or all t8€UTER/config/ systentf or in
$CUTER/config/all.cf files will affectall subsequent installations GUTEr.

A set of hashing routines

The routinesHASHA HASHB HASHCand HASHEprovide a Fortran hashing tool. They are system depen-
dent in that they rely on the number of bytes used to reprememmteger within the particular Fortran
dialect used. This number of bytes is set in the paramdB¥TESin $MYCUTER/config/ systencf or

in $MYCUTER/config/all.cf . If your Fortran compiler uses an “unorthodox” number ofdsyfor its
integers, you will have to change the valueN&YTES

CHAPTER 1. INSTALLATION AND USAGE 22

A definition of the arithmetic constants

The supplied functionSMACHRand DMACHReturn values for various machine dependent constants, for
single and double precision arithmetic, respectively. SEhmachine constants are denotadimiRsingle
precision and D in double precision. We recapitulate them in the followiaglée

| Parameter Brief description |
R1, D1 the smallest positive numbef such that g7 > 1
R2, D2 the smallest positive numbes such that 1€, < 1
R3, D3 the smallest nonzero positive number

R4, D4 the smallest full precision positive number;

R5, D5 the largest finite positive number

Each of these numbers should be modified, either in the coatfiga filesall.cf and/or<your _system>.cf ,
found unde$MYCUTER/config .

A CPU timer

This is a real functionCPUTIM that returns the current CPU-time used by the packagegessed in
seconds. This timer is, unfortunately, highly system ddpen The specific code f@PUTIMis originally

located in$CUTER/build/arch/compiler.*.* * and concatenated withcal.f at cast time, during
installation.

1.6.3 RebuildingCUTEr

RebuildingCUTET is done as described irl8l.4 Simply change t§MYCUTERand issue anake -s all
to make sure that everything that needs to be rebuilt is ltebui

1.7 Driver programs

Driver programs are Fortran source main programs that ekdVant user-provided subroutines from a
particular optimization or linear algebra package, andciviobtain function, derivative and other problem
information directly fromCUTEr subroutine tools. A driver is compiled and run by theerfaceto that
package.

For example, theCUTEr distribution includes an interface to the PRAXIS packagdisTinterface is
provided by two UNIX scriptssdprx.pro andprx.pro , stored inSCUTER/build/prototypes , Which

are cast intesdprx andprx and subsequently stored $MYCUTER/bin. Both scripts make use of the
auxiliary scriptrunpackage , cast from prototypeunpackage.pro , which is common to all interfaces.
More information on the usage of interfaces is givenirB§ The role of these three scripts is to decode the
input problem into the proper Fortran subroutines, gathemnecessary libraries and object files, link and
compile them together and finally launch the PRAXIS driveloge sourc@rxma.f is cast and linked
into prxma.o , stored unde$MYCUTERprecisiorbin . The driver sets up all the necessary data structures
and environment required by PRAXIS and calls the PRAXIS sutines to solve the input problem.

CHAPTER 1. INSTALLATION AND USAGE 23

All supported packages are represented by an abbreviateel. rior the purpose of an illustration, assume
this abbreviation igpak The interfaces scripts are calledlpakpro andpakpro , and the Fortran driver
programpakma.f .

The packages themselves &net* supplied in theCUTEr distribution as we only aim to provide a useful
and efficient testing and developing environment. It is #sponsibility of the user to get the package
source or object files and properly link them.

More details regarding a specific supported packagfenay be found in
$CUTER/common/src/pkg/ paKREADME.pak

1.8 TheSIF decoder

1.8.1 Where is theSIF decoder?

At this point, it is crucial to mention that, in contrast wiglarlier version ofCUTE [BCGT9Y, the SIF
decoder is no longer embeddeddnTEr. This choice was made for several reasons, some of which are
now briefly explained. First, it seemed important to us todeeonsistent set of tools with@UTEr which

all depend, in an indentical manner, on 8ie decoder. The decoder, however, could serve other purposes
than that of being a gear of the testing environment. As ag@erample, th&IF decoder is a vital part

of the forthcoming second release of theNCELOT package © G197, LANCELOT-B. It thus appeared
more consistent to isolate the decoder and simply have tier packages-€UTEr, LANCELOT-B, but
there could also be others—refer to it whenever necessangth&r reason is ease of maintenance, and
consistency when upgrading the decoder. All the packagéshwafer to it are using the same version.
Finally, theSIF decoder in its own right may evolve and develop separatelyillstration of this fact

is its recent ability to generate routines for function eedion suited for input to the HSL automatic
differentiation packageldSL_ADO1 and its threadsafe counterpa$L_AD02 [HSLO(].

1.8.2 SIF decoder sizes

Warning or error messages issued by 8ie decoder should be interpreted as related toSifieec
package, and the adjustments which they suggest should the imahe filesifdec.siz found under
$MYSIFDEC/precisiorfconfig/ . For more information, seejOT01].

1.8.3 CUTEr and automatic differentiation

The Harwell Subroutine Library-{SL0(] contains two packages supplying automatic differergrafia-
cilities. If either of these packagesSL_ADO1 or its threadsafe counterpa#SL_ADO2, is available to
the user, automatic differentiation may be used witbWTEr. Please note however thaSL_ADO1 is a
Fortran 90 package whileSL_ADO2 is a Fortran 95 package. Suitable compilers must theret®a/ail-
able. Forward and backward modes both provide first and seoater derivatives, while higher-order
derivatives are available in forward mode only. We referubker to [HSL.0(] for more detailed informa-
tion. As will be explained in §.9, command-line options to the interfaces allow users tacs&eward or
backward mode, and which package they wish to use. The atitodifferentiation packages should be
used like any optimization packages. they should be compiled but not linked. The object files sthoul

CHAPTER 1. INSTALLATION AND USAGE 24

then be placed, or linked to from, the direct@®yYCUTERprecisioitbin .

1.9 Interfaces

This section describes existi@JTEr interfaces with optimization and linear algebra packageshaow
to create a new interface.

Information and usage of the different interfaces to exgstbptimization and linear algebra packages
may be found in the man pag8&SUTER/common/man/manl, and users should ensure that the directory
$CUTER/common/man appears on theMANPATHT he man page for the generic scritiptmay be viewed

by issuing the commanaian script its X interfacexman, or, on LINUX systems, by executing the com-
mandless script.1 Tablel.4shows the interfaces provided and the packages to whiclctregspond.

For the purpose of an illustration, let us now consider uhe andsdunc interfaces to the UNCMIN
unconstrained minimization package. Their calling seqasrare as follows

sdunc [s] [-h] [-k] [-o J] [-| secs] [[-b] [-a]] [-show]
[-param name=value[,name=value...]] [-debug] probname[.SIF],

unc [-n] [-h] [-s] [-K] [-1] [0 j] [-] secs] [-debug].
The purpose oédunc is to SIF—decodeprobname.SIF , set environment variables defining object and
specification files necessary to compile the main UNCMIN atedgle, and launclhunpackage . The
scriptunc is simliar, except that it assumes that the problem hasdreaen decoded by tf&#F decoder.
The main executable is linked, compiled and rurrimpackage . An important difference with previous
versions ofICUTE is thatrunpackage is independent of any interface; only those scripts giverainlel1.4
depend on the optimization package which must be interfaddte arguments ofdunc andunc are
thoroughly described in the man pages. We briefly review thera.
-s link, compile and run the single precision instance. Doytséision is the default;
-h prints a help message;
-k keep the load module after use;
-r (unc only) discourage recompilation of the test problem;
-0 j verbosity level: -0 0 is silent mode and -0 1 is verbose modhe default is -0 0;
-| secs limits the CPU running time tsecsseconds;
-f (sdunc only) generate the relevant subroutines for automatiefitiation inforward mode;

-b (sdunc only) generate the relevant subroutines for automatiedfitiation inbackwardmode;

-a | (sdunc only) when used in conjunction with or -b, -a 1 uses the older HSL automatic differen-
tiation package ADOL, whicka 2 uses the newer, threadsafe, automatic differentiatiotkaupec
ADO2;

-show (sdunc only) displays possible parameter settings for probn&sii€]. Other options are ignored;

-param (sdunc only) cast probname[.SIF] against explicit parameteirsgt

CHAPTER 1. INSTALLATION AND USAGE 25

-debug links the libraries and compile with -g option so as to allogbdgging;

-n (unc only) use the load module if it exists. The default is to repden

The main object files for the supported packages (n this caseuncmin.o) should be placed in (or
symlinked to from the directoryyMYCUTERprecisionbin , while the required specification files should
be placed in (or symlinked to from) the current directory.

1.10 Creating a new interface for an optimization package

1.10.1 General procedure for Fortran and C interfaces

The purpose of this section is to explain how one can builerfate tools for another optimization pack-
age, similar to those interfacedunc andunc provided for UNCMIN. We provide generic scripgdgen
and gen to make this process easier. These scripts can be found iBCWHEER/build/prototypes
directory.

For illustrative purposes, we assume the package for winehvashes to provide an interface is called
pack . We suppose that both single and double precision instarfdibe package are available and that
interfaces in both precisions are required. An interfagejist one of the precisions can be obtained
by ignoring any of the comments relating to the other. A nundieadditional comments regarding the
interfacing of packages written in C are given ih 0.2 We suggest the following steps.

1. Construct a driver program calling the new package antyukie Fortran tools provided (for evalu-
ating the objective function, its gradiestc) The existing driver programsifcma, mnsma ve09ma,
stnma , etc) might help you get started in writing this new driver.

Now compile this program into an object file callpgtkma.o . The double precision object should
reside in the directory

$MYCUTER/double/bin
and the single precision object should reside in the dirgcto
$MYCUTER/single/bin

2. Compile the double precision instance of the completefgatograms contained in thgack pack-
age into one object fife(for examplepackd.o). Repeat this for the single precision instance of the
package, producing a second object file (for exanpaleks.o),

3. Connect tdbfCUTER/build/prototypes and copysdgen.pro andgen.pro to sdpack.pro and
pack.pro respectively. This is done by typing
prompt% cd $CUTER/build/prototypes
prompt% cp sdgen.pro sdpack.pro
prompt% cp gen.pro pack.pro

at the command prompt,

4. Create the new directoCUTER/common/src/pkg/pack

2|f users prefer, they may instead create random or statiarlislibpack.a or libpack.so

CHAPTER 1. INSTALLATION AND USAGE 26

5. Editsdpack.pro andpack.pro and modify them as follows:

(a) change the name of the package to be interfaced §@mmto pack. This is done in the
assignment of the shell variabl@éCand PACKAGEat the beginning of the script, so that it

reads
setenv PAC = pack

setenv PACKAGE = pack

(b) ifapplicable, add or remove command-line options tankerfacesdpack.pro andpack.pro
paying special attention to those options that are passed tovtheSIF decoder and to
runpackage.pro

(c) properly set theACKOBJANASPECSenvironment variables to contain the object file(s)/lisr
for the package and the specification file (if any) respelgtiv&he object file$ should lie
in $MYCUTERprecisiorbin , where precisionis either single or double, and the specifica-
tion file should lie in the directorsCUTER/common/src/pkg/$PACKAGE , i.e. in this case,
$CUTER/common/src/pkg/pack

6. Possibly, alterunpackage.pro to link BLAS libraries, or other relevant libraries.

7. The scripts now need to be cast against your machine-depespecifications. This may be done
by issuing the commands

prompt% sed -f $MYCUTER/ precisioifconfig/script.sed file.oro > $MYCUTER/bin/ file
prompt% chmod a+x $MYCUTER/bin/ file

at the command prompt, whefite is successivelgdpack andpack . If you alteredrunpackage.pro
the same should be done fldle=runpackage .

Note: In case your package is not going to be available onhallplatforms for which you have a
CUTEr installation, modify the scriptsdgen, gen and runpackage found in $MYCUTER/bin instead
of the prototype scripts. Otherwise, it is recommended jfoat write prototypes and store them in
$CUTER/build/prototypes

We would be very pleased if you could send your interface amgidprogram to us, so that we can
redistribute it with future versions @@UTEr, with proper ackowledgments. Thank you in advance and
good luck!

1.10.2 Interfacing packages written in C:cuter.h

We comment in this section the possibility of interfacingleges originally written in C witiCUTEr. As
of yet, the LOQO interface is the only one written in C, bussihioped that given the growing interest in
C/C++ optimization packages, this number is meant to irr@ea

The new subdirectorjnclude of $CUTER/commonhosts the C header filater.h containing various
declarations related to the coexistence of object filesiratmg from Fortran and C source files, and
simplifying calling sequences to th@UTEr tools from C. All the definition in this header file may be
accessed by specifying

3|f the user has created random or static libraries, thesaldlappear irsMYCUTERprecisiofiib

CHAPTER 1. INSTALLATION AND USAGE 27

#include {cuterh }

at the top of your C driver.

We now briefly describe the header filger.h and the apparent prototypes of th8TEr tools, as seen
from the C language.

Partly inspired byi2c.h , cuter.h defines the types

typedef long int integer;
typedef float real;
typedef double doublereal;
typedef long int logical;

meant to imitate the corresponding Fortran data types.dusay then define variables of tygeublereal
when having in mind a corresponding Fortran 77 variable gurent of typelouble precision , ora
Fortran 90 variable or argument of typal whosekind is that of1.0D+0 .

It also defines the two macros

#define FALSE_ (0)
#define TRUE_ (1)

simulating the two possible values for Fortran variablet/pélogical . Note the trailing underscores.

In CUTET, positive or negative infinite values are achieved by anywembarger in modulus than 19
hence the definition

#define CUTE_INF 1e20

in cuter.h

For convenience, and to account for the differences betweeplethora of Fortran and C compilers out
there, commormpparentprototypes for theCUTEr tools have been defined oater.h . These apparent
prototypes follow the general pattern

TOOLNAME(argl, arg2, ..., argn)

where the tool nam&OOLNAMENnust be specified in uppercase letters. Caution should lreissé when
specifying the arguments of a routine, given the fact thahterface Fortran and Gll the arguments
appearing in the argument list should jpeinters In practice, this has the consequence thiager
variables appearing in an argument list in the driver shoeldeclared as

integer *variable _name;

instead of

integer variable _name;

CHAPTER 1. INSTALLATION AND USAGE 28

As is always the case in C, the exception to this is arraysedimey are always treated as pointers. Thus,
for instance, a reference to tl&JTEr tool CSHwith the help ofcuter.h appears as

CSH(&n, &m, x, &m, v, &nnzh, &lh, h, imh, icnh);

with the declarations
integer *n, *m, *nnzh, *lh, *irnh, *icnh;
doublereal *x, *v, *h;

Note that in these declarationsah , icnh , x, v andh are arrays, while the other variables simulate
Fortraninteger variables. This is the reason why the addresses of the iait@bles appear explicitly
in the calling sequence ©SH while the arrays appear as if they were the “real” Fortrguarents.

The calling sequences of most tools are exactly as in Fertthay can be seen by typing

prompt% man t ool name

at the command prompt. The prototypes say thatib€Er tools all return avoid ouput.

One notable difference between Fortran and C is the wayredtéles are handled. C ussseamswhile
Fortran requires that anit numberbe associated to each open file. To account for this diffesemed as
the unit number is required by seve@UTEr tools, the two function§ORTRANOPENandFORTRANCLOSE
have been defined, with apparent prototypes

void FORTRAN_OPEN(integer *funit, char *fname, integer *ierr);

void FORTRAN_CLOSE(integer *funit, integer *ierr);

funit being the unit number associated to the file, &md being the error code returned by these
functions, a value of zero indicating a successful opematithese two functions may be called to open
and close th®UTSDIF.d file generated by th8IF decoder.

1.11 Checking the integrity of aSIF file

All the interfaces given in Tabl&.4follow the same pattern. If th&lF problem has not yet been decoded,
the interface first calls th8IF decoder by means of theifdecode script. Please pay attention to the
fact that, as mentioned in 88, the SIF decoder is now distributed as a separate packagerarstbe
installed prior to using any of theUTEr interfaces. The main executable for the decoder must belfoun
$MYSIFDEC/precisiorbin/sifdec ~ , where$MYSIFDECis an environment variable pointing to the current
instance ofsifDec. Failing to do so will result in an abort.

Once the problem has been decoded, the interface calls a@oseript calledunpackage which links
the relocatables together, creates an executable file aily faxecutes it. It may be useful in some cases
to decode &IF -encoded problem without running an optimization packdge\aards, or to simply check
the syntax of theSIF file. In that respect, theifdecode script may be called independently, from the
command line. Its syntax is similar to that of the interfaces

sifdecode [-s] [-h] [K] [-0 j] [-] secs] [-f] [-b] [-a] [-sh ow]
[-param name=value[,name=value...]] [-force] [-debug] p robnamel[.SIF]

Note that some of the command-line options only make sengn\ah optimization package is called

CHAPTER 1. INSTALLATION AND USAGE 29

after the problem has been decoded. For more informatiosifdetode , we refer the reader to the
documentation o§ifDec, [GOTO]].

1.12 Attempting installation on an unsupported architectue

As far as UNIX-like platforms are concerned, it should nottbe difficult to port CUTEr. This might
require, however, a number of changes in several files. Wgesign this section where some of these
modifications could take place. Additional modificationsynee necessary, depending on your local
system.

First, the installation scripts themselves may need totieesl, for compatibility reasons: the local C shell,
if there is one, may be different, or require different comuhdine options. For example, the very first
line of install _cuter may be#!/bin/csh under Solaris, but has to B#/bin/csh -f on LINUX
machines. All the scripts included in ti@JTEr distribution are thoroughly self-documented and should
be rather quickly understood by anyone familiar with the MMhvironment and the C shell. Similarly,
as all theCUTEr scripts use the C shell, they may all need corresponding fioations.

You may need to alter a feWmakeconfiguration files stored und8CUTER/config , such asall.cf
and/or<your _system>.cf . Also make sure that new compilers that you define there appea

$CUTER/build/arch/f.arch or $CUTER/build/arch/c.arch

for Fortran and C&- compilers respectively, with matching symbols. More sfeally, if your compiler
name isabg then the symbol which represents it in the configurationrilest be “Isabc” and the block
defining your compiler must look like

#ifdef Isabc

#define CompilerTagld abc
#define umakeCompilerFlag -Disabc
#define CompileCmd abc77 -c
#define LoadCmd abc77
#define CompilerlsF9095 yes
#define Compile9095Cmd abc90 -c
#define Load9095Cmd abc90
#define FortranFlags -0

#define NumberOfBytes 8

#endif

whereabc77 andabc90 represent the true compiler command for Fortran 77 anddo@d/95 source files
respectively; these need not match #be pattern. If the compileabc does not support Fortran 90/95,
then CompilerlsF9095 should be set too in the above block, and the two symbdsmpile9095Cmd
andLoad9095Cmd should be defined to the empty string. :

#ifdef Isabc

#define CompilerTagld abc
#define umakeCompilerFlag -DlIsabc
#define CompileCmd abc77 -c

#define LoadCmd abc77

CHAPTER 1. INSTALLATION AND USAGE 30

#define CompilerlsF9095 no
#define Compile9095Cmd
#define Load9095Cmd

#define FortranFlags -0
#define NumberOfBytes 8
#endif

If you wish to support a compiler for your platform which iseddy defined irll.cf , but the compiler
options are different on your platform, you need to make $lua¢ your settings are not overwritten by
those inall.cf . You might, for this, define a flag iyou _platform.cf as part of the compiler definition
and modifyall.cf so as to skip the corresponding compiler definition. Foraimsg, compilen9s is
defined in bottmac.cf andall.cf . Sinceall.cf will be sourced in all cases, the compiler definition in
mac.cf contains the line

#define n95Defined
Inall.ct , the definition om95 will be skipped if the symboh95Defined has already been defined:

#ifdef Isn95
#ifndef n95Defined

#endif
#endif

The file $CUTER/build/scripts/makefile.cmds will need to be altered so as to include your new
your _system.cf . This modification is however trivial.

If your system does not support man pages, these will be gedvin pdf and other formats on the
CUTEr website as will updates to this general documentation and othernmtion.

Fortran 77 files should be standard and compatible for thd pass. Check your local compiler docu-
mentation for possible incompatibilities. If there is na#able Fortran 90 compiler on your platform,
you will not be able to use those tools (unless you write one).

If your new installation procedure is a success, we will Eapéd to include it in the next releases of
CUTEr, with proper credits. In this case, please send detailexinmtion on your changes and on your
local system. On the other hand, please feel free to consa€tyou think we may be of some help.

Many thanks and again, good luck!

http://cuter.rl.ac.uk/cuter-www

CHAPTER 1.

INSTALLATION AND USAGE

Tool name\ Brief description

ubandh extract a banded matrix out of the Hessian matrix,

udh evaluate the Hessian matrix,

udimen get the number of variables involved,

udimse determine the number of nonzeros required to store the
sparse Hessian matrix in finite element format,

udimsh same as udimse, in coordinate format,

ueh evaluate the sparse Hessian matrix in finite element format,

ufn evaluate function value,

ugr evaluate gradient,

ugrdh evaluate the gradient and Hessian matrix,

ugreh evaluate the gradient and Hessian matrix in finite elememntdi,

ugrsh evaluate the gradient and Hessian matrix in coordinatedgrm

unames | obtain the names of the problem and its variables,

uofg evaluate function value and possibly gradient,

uprod form the matrix-vector product of a vector with the Hessiaatnix,

usetup set up the data structures for unconstrained minimization,

ush evaluate the sparse Hessian matrix,

uvarty determine the type of each variable.

ureprt \ obtain statistics concerning function evaluation and CiRig 1used,\

Table 1.2: The unconstrained minimizatiGTEr tools as of June 26, 2006.

31

CHAPTER 1.

INSTALLATION AND USAGE

Tool name\ Brief description

ccfg evaluate constraint functions values and possibly graslien

ccfsg same as ccfg, in sparse format,

ccifg evaluate a single constraint function value and possitdgignt,

ccifsg same as ccifg, in sparse format,

cdh evaluate the Hessian of the Lagrangian,

cdimen get the number of variables and constraints involved,

cdimse determine number of nonzeros to store the Lagrangian Hessia
in finite element format,

cdimsh determine number of nonzeros to store the Lagrangian Hgssia
in coordinate format,

cdimsj determine number of nonzeros to store the matrix of graslient
the objective function and constraints, in sparse format,

ceh evaluate the sparse Lagrangian Hessian in finite elemanifor

cfn evaluate function and constraints values,

cgr evaluate constraints gradients and objective/Lagrangjiadient,

cgrdh same as cqgr, plus Lagrangian Hessian,

cidh evaluate the Hessian of a problem function,

cish same as cidh, in sparse format,

chames obtain the names of the problem and its variables,

cofg evaluate function value and possibly gradient,

cprod form the matrix-vector product of a vector with the LagraargHessian,

cscfg evaluate constraint functions values and possibly grésliersparse format|

cscifg same as cscfg, for a single constraint,

csetup set up the data structures for constrained minimization,

csgr evaluate constraints and objective/Lagrangian functiaalignts,

csgreh evaluate both the constraint gradients, the Lagrangiasibies
in finite element format and the gradient of the
objective/Lagrangian in sparse format,

csgrsh same as csgreh, in sparse format instead of finite elemenafpr

csh evaluate the Hessian of the Lagrangian, in sparse format,

cvarty determine the type of each variable,

creprt \ obtain statistics concerning function evaluation and CiRig tused,

Table 1.3: The constrained minimizati@UTEr tools as of June 26, 2006.

32

CHAPTER 1. INSTALLATION AND USAGE 33

| Interface | Package
cgd/sdcgd CG_Descent (Hager and Zhang)
cgp/sdcgp CG+ (Liu, Nocedal and Waltz)
cob/sdcob COBYLA (Powell)
fil/sdfil FilterSQP (Fletcher and Leyffer)
gen/sdgen Generic Fortran 77 interface
gen90/sdgen90 Generic Fortran 90 interface
genc/sdgenc Generic C/G+ interface
hrb/sdhrb SIF —Harwell- or Rutherford-Boeing

sparse matrix format converter (Gould)

ipopt/sdipopt IPOPT (Wachter)
knit/sdknit KNITRO (Byrd, Nocedal and Waltz)
la04/sdla04 LAO4 (Reid)
Ibb/sdlbb L-BFGS-B (updated) (Nocedal)
Ibs/sdlbs L-BFGS (Nodedal)
Imb/sdimb L-BFGS-B (Nocedal)
lgo/sdlgo LOQO (Benson, Shanno and Vanderbei)
mns/sdmns MINOS (Murtagh and Saunders)
nits/sdnits NITSOL (Pernice and Walker)
nps/sdnps NPSOL (Gill, Murray, Saunders and Wright)
osl/sdosl OSL (IBM)
pds/sdpds PDS (Torczon)
prx/sdprx PRAXIS (Brent and Chandler)
snp/sdsnp SNOPT (Gill, Murray and Saunders)
stn/sdstn Stenmin (Bouaricha)
tao/sdtao TAO (Benson, Curfman Mclnnes, Moré and Sarigh)
ten/sdten Tenmin (Schnabel and Chow)
trn/sdtrn TRON (Lin and Moré&)
unc/sdunc Uncmin (Koontz, Schnable and Weiss)
valb/sdvals VA15 (Nocedal)
ve09/sdve09 VEO09 (Gould)
vel2/sdvel2 HSL VE12 (Gould)
veld/sdveld VE14 (Gould)
vf13/sdvfl3 VF13 (Powell)

Table 1.4: Interfaces between tB®&TEr tools and existing optimization and linear algebra packaage
of June 26, 2006.

Chapter 2

CUTE log

In this chapter, we kept track of all the changes tidTE has undergone since the first release.

21 CUTE1.0

This is the first version oEUTE, made available in March 1993.

2.1.1 Updates since March 93
Additional interfaces

COBYLA This package is a direct search method for inequality camstd problems, that models the
objective and constraint function by linear interpolatanmd does not use derivatives. It is available
from Professor M.J.D. Powell, DAMTP, Cambridge UniversiBambridge, UK (e-mail address:
mjdp@damtp.cambridge.ac.uk).

TENMIN This package is intended for problems where the cost ofrgg@ne n by n matrix (where n is
the number of variables), and factoring it at each iteratisrmcceptable. The software allows the
user to choose between a tensor method for unconstrainedizgion, and an analogous standard
method based upon a quadratic model. The tensor method &askesteration upon a specially
constructed fourth-order model of the objective functibattis not significantly more expensive to
form, store, or solve than the standard quadratic model. MTENis available via anonymous ftp
from ftp.cs.colorado.edu, in the directory pub/cs/disttiensor. Any questions about this software
should be addressed to: eskow@cs.colorado.edu

The interface includes the scripts sdten.* and ten.*, theedtenma.f, and the file README.tenmin.
The driver was originally written by Ali Bouaricha, of CERES, Toulouse, France.

NPSOL This package is designed to minimize smooth functions stibgeconstraints, which may in-
clude simple bounds, linear constraints, and smooth nesliconstraints. The software uses a
sequential quadratic programming algorithm, where boulasar constraints and nonlinear con-
straints are treated separately. Unlike MINOS, NPSOL stafematrices in dense format, and is

34

CHAPTER 2. CUTE LOG 35

therefore not intended for large sparse problems. NPSOlaitable from the Office of Technology
Licensing at Stanford University.

The interface includes the scripts sdnps.* and nps.* theedripsma.f, an options file NPSOL.SPC,
and the file README.npsol. The driver is based on one writtgR&ihuang Chen of Northwestern
University, Chicago, U.S.A.

VA15 This package solves general nonlinear unconstrained garabusing a limited memory BFGS
method. It is intended for large-scale problems. VA15 ig pathe Harwell Subroutine Library,
1993. Itis distributed United Kingdom Atomic Energy Authigr Harwell, subject to certain license
agreements. Itis copyrighted jointly by the UKAEA and SERSCiénce and Engineering Research
Council).

The interface includes the scripts sdimqg.* and Imq.*, areldhver val5ma.f.

MINOS 5.5 The interface written for MINOS 5.4 works without change KOiINOS 5.5.

Changes to interfaces

MINOS There are now different default MINOS specifications fortesize of CUTE installation (small,
medium, and large). In the CUTE distribution, these diffiergpecifications files are named M-
NOS.sml, MINOS.med, and MINOS.Irg. The unwrap procedungiemall three of these files to
the $CUTEDIR/minos directory. The install procedure thepies the specifications file of the
appropriate size to MINOS.SPC.

MATLAB/CUTE In addition we have also included an interface which alldvesGUTE evaluation tools
to be called from MATLAB

Additional platforms

DEC OSF/1 Note that OSL is not available on this platform. (All othetiogization packages and CUTE
programs are available.)

DEC VMS (using g-floating double precision)
Note that OSL is not available on this platform. (All othettiopzation packages and CUTE pro-
grams are available.)

DOS using WATCOM Fortran compiler
Note that OSL is not available on this platform. (All othertiogzation packages and CUTE pro-
grams are available.)

HP-UX All optimization packages are available on this platform.

Additional tools Two new constrained tools were added to CUTE in October 19Bdse tools compute
the function value and possibly the gradient of a single taimg. One tool, ccifg, stores the constraint
gradient in dense format, while the other tool, cscifg, esdt in sparse format.

In December 1994, we added second derivatives availablesparae matrix stored in “finite-element”
format This added five new corresponding tools asmbe.ff,aedgreh.f, ueh.f and ugreh.f .

CHAPTER 2. CUTE LOG 36

Changes to tools In October 1994, the constrained tools were updated to ningka tmore efficient for
unconstrained problems. On most unconstrained problémse thanges will make a small (not dramatic)
difference in solution time.

Changes to scripts Linking compiled, library versions of BLAS (Basic Linear ddbra Subprograms)

The linking of compiled, library versions of the BLAS is nownmitted by all scripts which use the BLAS
(bgp.*, cns.*, Imq.*, mns.*, nps.*, osl.*, gp.* ten.*, andha.*), and the generic script gen.*, EXCEPT for
the .vax scripts.

If there are library versions of the level-1 BLAS availabilee variable BLAS in these scripts should be
set to a list of names of the object library suffix -Ix, where tibject library libx.a contains the relevant
BLAS. For example, if the BLAS are shared between objecalties libblasl.a and libblas2.a, the variable
BLAS should be set to "-Iblasl -Iblas2”, noting that thosbmwgrams in libblas1.a will take precedence
over those in libblas2.a.

If compiled BLAS are not available, the variable BLAS shobklset to ™. (This is the default setting.)
In this case, the link statement includes linpac.o, whidhécompiled object for the Fortran source file
linpac.f provided in the CUTE distribution.

Linking compiled, library versions of HSL (Harwell Subrout ine Library) The linking of compiled,
library versions of HSL is now permitted by all scripts whiahk subroutines from HSL (bgp.*, cns.*,
Img.*, and qp.*), EXCEPT for the .vax scripts.

If there is a library version of the HSL available, the valeablSL in these scripts should be set to -Ix,
where the object library libx.a contains the relevant HSar. &le, if HSL is contained in the object
library libhsl.a, the variable HSL should be set to "-lhsl".

If a compiled version of HSL is not available, the variablelHShould be set to ™. (This is the default
setting.) In this case, the link statement includes the rafrtiee appropriate object file for the optimization
package in question. For example, if the variable HSL is®é&t in bgp.*, the link statement includes
$CUTEDIR/qp/vel4s.o for single precision, or $SCUTEDIRKaggi4d.o for double precision. (The names
of the appropriate object files are given in the sectionlentiiRunning the scripts available within CUTE”
in the file SCUTEDIR/READ.ME. Before installation, this REPAME is entitted README.mcn, where
mcn is the three-letter extension for your platform.)

2.1.2 Bug fixes since November 93

30/Nov/93: gps.f — Correction 1. 3 lines interchanged.
03/Dec/93: mi54ma.f — Correction 10. increased NWCORE for small andiomadnstallations.

03/Dec/93: MINOS.sml, MINOS.med, MINOS.Irg Removed line setting Gr&3ption to 0. Now Crash
Option defaults to 3.

03/Dec/93: README.minos — Added a few lines to indicate that DEC VAX/VMBers should use
mil0vms.f, not milOunix.f, to create the MINOS 5.4 objectdule.

13/Jan/94: makefn.f, makegr.f — Two lines modified for correcting a f@mnproblem in conditional
expressions (ELEMENTS and GROUPS sections).

CHAPTER 2. CUTE LOG 37

13/Jan/94: classify.osf classall.osf — The scripts are updated tocagodblems with echo.

20/Jan/94: genma.f, gend.f, gens.f — Converted these files to upperaradadded a dummy argument
in the call to gen.

21/Jan/94: cns.* (formerly con.*), sdcns.* (formerly sdcon.*), pager, README.cry, README.dec,
README.install, README.osf, README.rs6, README.sun, REME.vax — Renamed con.*
to cns.* to allow CUTE to run under DOS. Also renamed sdcom $dcns.* for consistency.

21/Jan/94: select.* — Removed extraneous basic system commands.

21/Jan/94: slct.f — Removed translation of file name FILEN to upper casds change allows the user
to specify a full path name for the .DB file, and thus the .DB fie=d not necessarily reside in
$MASTSIF.

21/Feb/94: ccfg.f, cdh.f, cfn.f, cgr.f, cgrdh.f, cnames.f, cofg.f,rof.f, cscfg.f, csetup.f, csgr.f, csgrsh.f,
csh.f, ubandh.f, udh.f, ufn.f, ugr.f, ugrdh.f, ugrsh.f,aomes.f, uofg.f, uprod.f, usetup.f, ush.f,
README.tools — Replaced sized array declarations with a@@tions using parameters. This
change means that these arrays can be resized by changirig®pbrameter value, without chang-
ing the array declaration itself.

25/Apr/94: ubandh.f — Declared previously undefined variable NNZH é=ger.
25/Apr/94. val5ma.f — Declared previously undefined variables MAXIP, MP, INFO as integer.

02/May/94: README.cry, README.dec, README.install, README.osf, REAME.rs6,
README.sun, README.vax — Removed HS25.SIF from documeatatsince it is no longer
included in CUTE as a test problem.

04/May/94: _specs, README.tools, README.depend — Renamed former REALbDIs to
README.depend and renamed formspecs to README.tools, to have the names better reflect
the contents of these documentation files.

04/May/94: unfold.* — Added line to move README.depend to $SCUTEDIR/dbepend.rdm.
10/May/94: csetup.f — Added OUTPUT common block to SAVE statement.

10/May/94: sd*.*, bgp.*, cns.*, gen.*, Img.*, mns.*, nps.*, osl.*, gp.ten.*, unc.*, except *.vax scripts
— Added check for installation of requested precision (&rag double), to make the failure more
graceful when the user tries to run a precision which has eenlinstalled. If the requested preci-
sion is not installed, each script writes an error messagdeaminates.

11/May/94: select.*, slct.f — select.* scripts now create SLCT.DAT @iantaining the setting of SMAST-
SIF, in order that the slct program can give the full path némn¢he default classification file.

12/May/94: select.* — Removed cd to $MASTSIF since creation of SLCT.DA&ans it is no longer
necessary to initiate slct from $MASTSIF.

12/May/94: unfold.* — Added line to remove sysdp*.* files. These are systdependent files required
to install CUTE on some platforms.

12/May/94: *ma.f, clsf.f, local.f, runsd.f, slct.f — Added machinesindent lines for WATCOM Fortran
installations. All these lines begin with CWFC.

CHAPTER 2. CUTE LOG 38

12/May/94: *.wfc —
13/May/94: Added batch files to run CUTE under DOS with WATCOM Fortran gasr.

25/May/94: asmbl.f — Fixed error in the calculation of the Hessian wlaobse when the same problem
variable was assigned to two or more elemental variables.

27/May/94: sd*.vax, bgp.vax, cns.vax, gen.vax, Img.vax, mns.vax,vaps gp.vax, ten.vax, unc.vax —
Added check for installation of requested precision (&ngl double), to make the failure more
graceful when the user tries to run a precision which has eenlinstalled. If the requested preci-
sion is not installed, each script writes an error messagdeaminates.

31/May/94: mi53ma.f, mi54ma.f, npsma.f, oslma.f, vfl3ma.f — ReplatidIX machine-dependent
OPEN statements for OUTSDIF.d with generic UNIX OPEN stasts.

31/May/94: *.hp — Added scripts to run CUTE on HP9000 workstations urtdierUX.
02/Jun/94: unfold.* — Changed (for the sake of DOS) to handle postfixddenames limited to 3 chars.

03/Jun/94: local.f — Added machine-dependent lines for HP installaio All these lines begin with
CHP.

12/Jul/94: local.f — Added machine-dependent lines for Silicon Graphnstallations. All these lines
begin with CSGI.

18/Jul/94: initw.f —
25/Jul/94. gen.*, mns.*, nps.*, ten.*, unc.* — Added check for existeraf required object file.

25/Jul/94: bgp.*, cns.*, Img.*, gp.*, unfold.*, paper.tex, README)GrREADME.dec, README.hp,
README.install, README.osf, README.rs6, README.sun, REEME.vax, README.wfc —
Reorganized directories for Harwell subroutine execesbNow each Harwell optimization sub-
routine included in CUTE has its own directory, with the samaene as the subroutine (i.e., vals,
ve09, vel4, vf13). Users linking compiled objects corresiiog to the Harwell subroutines should
place these objects in the corresponding directories. ds&ing the Harwell subroutine library
are unaffected by this change.

26/Jul/94: instll.* — Added check that unwrap has taken place beforewien of instll procedure.
26/Jul/94. gen.vax — Removed erroneous blank in line setting ctools.

26/Jul/94. classall.cry, classall.dec, classall.hp, classalldagsall.rs6, classall.sun, classall.vax —
Added check for existence of CLASSF.DB before removing it.

26/Jul/94: classall.wfc — Added line to type final classf.db file.

26/Jul/94. classify.wfc — Replaced block of lines to prevent failureemtthe specified directory is the
current one.

26/Jul/94: sysdpl.wfc (renamed by unfold.wfc to classone.wfc) — Regaflablock of lines to prevent
failure when classf.udb does not exist.

CHAPTER 2. CUTE LOG 39

26/Jul/94: classify.cry, classify.dec, classify.hp, classify.oslassify.rs6, classify.sun, classify.vax —
Added check for existence of CLASSF.UDB before moving it toXSSF.DB.

27/Jul/94; sdgen.vax — Replaced 'purge’ with ‘purge/nolog’ on threms.

27/3ul/94: slct.f — Changed matching for fixed number of variables orst@ints. A variable number
(V' in the classification string) is no longer considerednmatch a fixed number. Also fixed the
initialization of FILEN for non-Unix platforms.

27/3ul/94: tenma.f, uncma.f, vals5ma.f, ve09ma.f, vel4ma.f — DeletlMClines, since CUTE does
not support installations under VM/CMS.

27/Jul/94: README.install — Added CWFC and CHP to keywords table. Algplained presence of
CIBM in local.f and runsd.f.

02/Aug/94: slct.f — Changed matching for number of variables or consigan an interval. A variable
number (V' in the classification string) is no longer coreield to match a number in an interval.

05/Aug/94: osl.* — Added check for existence of executable after linkl &mad statement. If the ex-
ecutable does not exist, the error message reminds the wssisure that FLIBS points to the
Optimization Subroutine Library.

05/Aug/94: bgp.*, cns.*, Imq.*, gp.* — Added check for existence of r@gd object file. If the object
file does not exist, the error message states that eithebjbetdile must be placed in the appropriate
directory, or HSL must point to the user’'s Harwell Subroatirbrary.

08/Aug/94: README.install — Made changes to reflect recent changes tdEphckage.

23/Aug/94: MINOS.Irg, MINOS.med, MINOS.sml Replaced line setting ffeubasics Limit’ with line
setting 'Hessian Dimension’.

24/Aug/94. README.*, maketo.*, mns.*, sdmns.*, unfold.* — Changed mi5* to minos*.*, since
the scripts and tools for MINOS 5.4 work without modificatifam MINOS 5.5, and these are now
the standard versions of MINOS. Also explicitly added MIN®S to README.minos.

12/Sep/94: osl.cry, osl.hp, osl.rs6, osl.sun — Moved stanza settin@Blto follow stanza setting BLAS,
and expanded comment in this stanza. Also deleted spacedretw and 'SFLIBS’ in link com-
mands.

14/Sep/94: ccfg.f — Fixed bug in Jacobian calcuation for groups withydirlear elements.

15/Sep/94: cofg.f, ccfg.f, cscfg.f — Removed incorrect storage of remozentries in FUVALS(LGRJAC
) and updating of indices in IWK(LSTAJC). This error did ndfegt the output of these routines,
but would affect other routines using these arrays. Alscoread setting of FIRSTG to .FALSE.

04/0ct/94: ccifg.f, cscifg.f — Added new tools to evaluate the functamd possibly the gradient of a
single constraint, in both dense and sparse formats.

04/0ct/94: README.*, gen.*, maketo.*, unfold.* — Added ccifg.f and afg.f as appropriate.

05/0ct/94: csetup.f, usetup.f — Rearranged variable declarationgparate common and local vari-
ables.

CHAPTER 2. CUTE LOG 40

05/0ct/94: ccfg.f, cdh.f, cfn.f, cgr.f, cgrdh.f, cnames.f, cofg.f,rop.f, cscfg.f, csetup.f, csgr.f, csgrsh.f,
csh.f — Changed constrained tools to make them more effitdeninconstrained problems.

05/Jan/95: SAMPLE.SIF — renamed sifcmd.lst to avoid the confusion vtk files describing actual
problems. Suitable modifications in the README.* and in udft,

2.2 CUTE version 2.0

This version ofCUTE corresponds to the paper published in TOMS. It incorporalieshanges, correc-
tions and updates described above for CUTE 1.0 and updates.

2.2.1 Updates since January 1995

06/01/95: Output printing improved for vi13ma.f
22/01/95: Output printing improved for cobma.f

20/08/98: Additional tools cidh.f and cish.f, which compute the Hassi of individual problem functions
(objective or constraints) in dense and sparse formatecésply, added.

17/05/99: Output printing improved for ush.f, ugrsh.f, csh.f, cishnid csgrsh.f

25/08/99: redundant format statements removed from usetup.f, cdetdp3ma.f, minosma.f, osima.f,
cobma.f and uncmai.f

25/08/99: tabs removed from cofg.f, ccfg.f and cscfg.f

2.2.2 Bug fixes since January 1995

15/08/95: Error message and output format improvements in makefil. haakegr.f
24/10/95: Dummy array dimension corrected in call to SETVL in asmbe.f
20/03/96: Order of two statements changed in asmbl.f and asmbe.f

16/01/97: KA properly initialized in minosma.f and mi53ma.f

06/02/97: 10BJ properly initialized in minosma.f and mi53ma.f

25/04/97: checks for space allocation fro the Jacobian in csgr.f amsbama.f

19/08/97: The Hessian sparsity pattern no longer depends on the \@ties problem unknowns and La-
grange multipliers, but just on the structure of the probldinis implies that, for certain argument
values, zero entries will occur where previously there \@dwdve been no entry. The advantage of
a fixed pattern is that this simplifies the job for users of spanatrix solvers which often presume
that this is the case.

27/08/99: Length of arrays IPRNHI and IPRHI properly checked in asiiphesh.f, ugreh.f, ceh.f and
csgreh.f

CHAPTER 2. CUTE LOG 41

2.3 CUTE version 2.99999

This version adds a number of new tools in anticipatior€0frEr, which is due for release in 2001. It
incorporates all changes, corrections and updates dedaaitove for CUTE 2.0 and updates.

2.3.1 Major additions

New routines

- UDIMEN, UDIMSH, UDIMSE, CDIMEN, CDIMSH, CDIMSE, CDIMSJ taletermine ap-
propriate array dimensions in advance

- UVARTY, CVARTY to detect integer/zero-one variables

SIF Extension to SIF format to allow users to specify expliciadratic terms for the objective function;
these extensions have been made by others to the MPS forimadée quadratic programs.

21/02/00: Now a non-fatal return when the SIF file is missing or incortglélso, added OSL-like alias
QSECTION for QUADRATIC card.

06/03/00: Increased integer formats from 16 to 18. Increased filenaommét in sict.f from 39 to 256.
Improved workspace partitions. Fixed bug introduced redeadOSL-like alias QSECTION on
21/02/00.

07/09/00: Checks added to ensure that the range transormation isutusef

Chapter 3

Future versions of CUTEr

3.1 Future features

e GUI,

e Have all the memory allocated in one place at the beginnirigs Would require further versions
(like CUTEst) to be written in Fortran95, Fortran2000, or similar,

AMPL to SIF converter (maybe not)

GAMS to SIF converter (even less likely)

C interfaces (aaargh),

Support for Windows (double aaargh)

42

Chapter 4

License

Copyright (C) the Council for the Central Laboratory of thedgarch Councils, CERFACS and Facultes
Universitaires Notre-Dame de la Paix (CCLRC, CERFACS aniilBB) 2001.

SOFTWARE LICENSE AGREEMENT NOTICE - THIS SOFTWARE IS BEINGRRVIDED TO YOU
BY CERFACS UNDER THE FOLLOWING LICENSE. BY DOWN-LOADING, ISTALLING AND/OR
USING THE SOFTWARE YOU AGREE THAT YOU HAVE READ, UNDERSTOOD MD WILL
COMPLY WITH THESE FOLLOWING TERMS AND CONDITIONS.

1. This software program provided in source code format (8w@urce Code”) and any associated
documentation (the "Documentation”) are licensed, nad,stal you.

2. CCLRC, CERFACS and FUNDP grant you a personal, non-eixeluson-transferable and royalty-
free right to use, copy or modify the Source Code and Docuatient provided that you agree
to comply with the terms and restrictions of this agreemefdu may modify the Source Code
and Documentation to make source code derivative workgcblgode derivative works and/or
documentation derivative works (called "Derivative WdjksThe Source Code, Documentation
and Derivative Works (called "Licensed Software”) may bedivy you for personal and non-
commercial use only. "non-commercial use” means uses teat@ or will not result in the sale,
lease or rental of the Licensed Software and/or the use dfitemsed Software in any commercial
product or service. CCLRC, CERFACS and FUNDP reserve ditsigot expressly granted to you.
No other licenses are granted or implied.

3. The Source Code and Documentation are and will remainalliegpsoperty of CCLRC, CERFACS
and FUNDP. The Source Code and Documentation are copydigineks. You agree to treat any
modification or derivative work of the Licensed Softwarefaswere part of the Licensed Software
itself. In return for this license, you grant CCLRC, CERFA@®& FUNDP a non-exclusive per-
petual paid-up royalty-free license to make, sell, haveanadpy, distribute and make derivative
works of any modification or derivative work you make of thed¢msed Software.

4. The licensee shall acknowledge the contribution of ther&oCode in any publication of material
dependent upon the use of the Source Code. The licenseeisbattasonable endeavours to send
to CCLRC, CERFACS and FUNDP a copy of each such publication.

For CCLRC, contact n.gould@rl.ac.uk, for CERFACS, contabin@cerfacs.fr and for FUNDP,
contact Philippe.Toint@fundp.ac.be.

43

CHAPTER 4. LICENSE 44

5. CCLRC, CERFACS and FUNDP have no obligation to supportibensed Software it is providing
under this license.

THE LICENSED SOFTWARE IS PROVIDED "AS IS” AND CCLRC, CERFAC&d FUNDP
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIEBY WAY OF
EXAMPLE, BUT NOT LIMITATION, CERFACS MAKE NO REPRESENTATI®IS OR WAR-
RANTIES OF MERCHANTIBILY OR FITNESS FOR ANY PARTICULAR PURBSE OR THAT
THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION WILL NOT IRRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER BIHTS. CCLRC,
CERFACS, FUNDP AND THE AUTHORS OF THE LICENSED SOFTWARE WIINOT BE
LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMACES, OR ANY
OTHER RELIEF, OR FOR ANY CLAIM BY ANY THIRD PARTY, ARISING FRM YOUR
USE OF THE LICENSED SOFTWARE.

6. This license is effective until terminated. You may terate this license at any time by destroying
the Licensed Software.

Acknowledgements

Phil Gill for Snopt, Jorge Nocedal and Richard Waltz for KIR®. Sven Leyffer for the interface to
FilterSQP.

Appendix

Environment variables

The environment variables described in Tabléare vital toCUTEr. Refer to your local documentation
or system administrator for more information on how to seséhenvironment variables.

| Name | Purpose |
CUTER | Location of the source of theUTEr package;
MYCUTER| Location of the local instance @fUTEr;
SIFDEC | Location of the source of th&ifDec package;
MYSIFDEC| Location of the local instance @&fifDec;
MASTSIF | Location of the local collection odIF problems;

Table 4.1: Environment variables vital @JTEr.

46

Bibliography

[BCGT95] I. Bongartz, A.R. Conn, N.I.LM. Gould, and Ph.L. fiti CUTE: Constrained and Uncon-

[CGT92]

[GOTO1]

[HSLOO]

strained Testing EnvironmemACM Transactions on Mathematical Softwa2d(1):123-160,
1995.

A.R. Conn, N.I.M. Gould, and Ph.L. TOInLANCELOT, A Fortran Package for Large-Scale
Nonlinear Optimization (Release ANumber 17 in Springer Series in Computational Math-
ematics. Springer-Verlag, 1992.

N.I.M. Gould, D. Orban, and Ph.L. ToingeneralSifDec documentationRutherford Apple-
ton Laboratory, UK, GRFACS France and Facultés Universitaires Notre-Dame de la, Paix
Belgium, 2001. sebttp://cuter.rl.ac.uk/cuter-wwwi/sifdec

Harwell Subroutine LibraryA collection of Fortran codes for large-scale scientific garta-
tion. AERE Harwell Laboratory, http://www.numerical.rl.ak/bsl, 2000.

47

	Installation and usage
	Installing and managing CUTEr
	install_cuter
	update_cuter
	uninstall_cuter
	Rebuilding CUTEr

	The CUTEr tree
	Interfacing CUTEr and Matlab(R)
	MEX-Files basics
	CUTEr and MEX-Files
	Using CUTEr from within Matlab
	Adding a new tool

	User-modifiable parts
	CUTEr tools
	CUTEr sizes
	tools sizes
	Sizes for the MATLAB interface tools
	Rebuilding CUTEr

	Driver programs
	The SIF decoder
	Where is the SIF decoder?
	SIF decoder sizes
	CUTEr and automatic differentiation

	Interfaces
	Creating a new interface for an optimization package
	General procedure for Fortran and C interfaces
	Interfacing packages written in C: cuter.h

	Checking the integrity of a SIF file
	Attempting installation on an unsupported architecture

	CUTE log
	CUTE 1.0
	Updates since March 93
	Bug fixes since November 93

	CUTE version 2.0
	Updates since January 1995
	Bug fixes since January 1995

	CUTE version 2.99999
	Major additions

	Future versions of CUTEr
	Future features

	License

